

Program ASA-HITRAN 2022

	Wednesday	Thursday	Friday
	Aug. 24, 2022	Aug. 25, 2022	Aug. 26, 2022
8:30 – 9:00	Welcome		
	Chairwoman : J. Buldyreva	Chairman : V. Boudon	Chairwoman: D. Viglaska
9:00 – 9:40	9:00 - 9:20 V. Tyuterev	A. J. FLEISHER	D. MONDELAIN
	Recent studies in ozone spectroscopy and dynamics		
	9:20 - 9:40 A. Campargue	Accurate molecular line intensities :	CO ₂ and CH ₄ line shape parameters with their
	Water absorption spectroscopy: Continua measurements and Validation tests of spectroscopic databases	Measurements, applications, and isotope ratios	temperature dependence in support of satellite missions
9:40 – 10:00	M. Birk	P. Cacciani	O. Polyansky
70.00	Fourier-transform intensity measurements with 0.1% accuracy	New analysis of ammonia spectrum in the	Review of the recent Progress on the Ab Initio
	0.170 accuracy	4700-5650 cm ⁻¹ energy range. Importance of intensity transfer in case of quasi degenerated energy levels	Calculations of the Line Centers and Line Intensities
10:00 - 10:20	Z. Reed	D. Commele	F. Skinner
	Comb-locked Cavity Ring-down Spectroscopy for Precise Measurements of Molecular Spectra	P. Cermak IR Ammonia spectra: Accuracy tests around	Development of the HITRAN S ₂ line list in the UV containing electronic transitions: $B^3\Sigma_{u}^- X^3\Sigma_{g}^-$, $B''^3\Pi_{u}^-$
		6000 cm ⁻¹	$X^3\Sigma^{\ \mathrm{g}},\ f^1\Delta_{\mathrm{u}}$ - $a^1\Delta_{\mathrm{g}}$
10:20 – 10:40	J. Hayden	A. Perrin	E. Panier
	A table-top dual-comb spectrometer in the $5-10~\mu m$ range for line-parameter studies with $10^{-4}~cm^{-1}$ accuracy	First investigation of the υ_1 band of nitric acid (HNO ₃) at 3551.766 cm ⁻¹	Update on RADIS: a fast line-by-line code for high- resolution infrared molecular spectra – GEISA database support and improved computation of sparse spectra
10:40 -11:00	Coffee break	Coffee break	Coffee break
11:00 –11:40	MA. MARTIN	E. MLAWER	R. GAMACHE
	An exotic use of the HITRAN database: Predicting laser lines for optically pumped terahertz molecular laser	Recent development of the MT_CKD water vapor continuum	Calculating Line Shape Data for Spectroscopic Databases
11:40 -12:00	L. Manceron	H. Fleurbaey	J. Buldyreva
	Far infrared spectroscopy of the ozone molecule		
ĺ	and its isotopomers between 50 and 800 cm ⁻¹	H ₂ O-CO ₂ binary absorption continua in the infrared transparency windows	Theoretical approach to high-resolution pressure- broadening parameters for remote sensing of
	and its isotopomers between 50 and 800 cm ⁻¹ O. Ben Fathallah		broadening parameters for remote sensing of exoplanetary atmospheres
12:00 –12:20		transparency windows	broadening parameters for remote sensing of exoplanetary atmospheres E. M. Adkins Application of theoretical constraints to model the measured temperature and wavelength dependence of collision-induced absorption in the 0.76 µm and 1.27
12:00 –12:20 12:20 –12:40	O. Ben Fathallah Measurements of Line Intensities and self- broadening coefficients in the v_2 ,	P. Chelin Evaluating new settings and robustness for retrieved ammonia (NH ₃) total columns from the OASIS ground-	broadening parameters for remote sensing of exoplanetary atmospheres E. M. Adkins Application of theoretical constraints to model the measured temperature and wavelength dependence of collision-induced absorption in the 0.76 μm and 1.27 μm O ₂ bands
	O. Ben Fathallah Measurements of Line Intensities and self- broadening coefficients in the ν ₂ , ν ₅ and ν ₃ +ν ₆ Bands of Methyl Iodide	P. Chelin Evaluating new settings and robustness for retrieved ammonia (NH ₃) total columns from the OASIS ground-based remote sensing observatory	broadening parameters for remote sensing of exoplanetary atmospheres E. M. Adkins Application of theoretical constraints to model the measured temperature and wavelength dependence of collision-induced absorption in the 0.76 µm and 1.27
	 O. Ben Fathallah Measurements of Line Intensities and self-broadening coefficients in the ν₂, ν₅ and ν₃+ν₆ Bands of Methyl Iodide S. Kassi The (2-0) R(0) and R(1) transition frequencies of HD at the Dn/n=10⁻¹⁰ level of accuracy from 	P. Chelin Evaluating new settings and robustness for retrieved ammonia (NH ₃) total columns from the OASIS ground-based remote sensing observatory C. Janssen Multi-spectral ozone spectroscopy for atmospheric applications: Recent experimental results at 5 μm and 10	broadening parameters for remote sensing of exoplanetary atmospheres E. M. Adkins Application of theoretical constraints to model the measured temperature and wavelength dependence of collision-induced absorption in the 0.76 µm and 1.27 µm O ₂ bands P. Wcislo Ab Initio Calculations of Line-Shape Parameters for
12:20 –12:40	 O. Ben Fathallah Measurements of Line Intensities and self-broadening coefficients in the ν₂, ν₅ and ν₃+ν₆ Bands of Methyl Iodide S. Kassi The (2-0) R(0) and R(1) transition frequencies of HD at the Dn/n=10⁻¹⁰ level of accuracy from Doppler spectroscopy at 80 K 	P. Chelin Evaluating new settings and robustness for retrieved ammonia (NH ₃) total columns from the OASIS ground-based remote sensing observatory C. Janssen Multi-spectral ozone spectroscopy for atmospheric applications: Recent experimental results at 5 μm and 10 μm and open questions	broadening parameters for remote sensing of exoplanetary atmospheres E. M. Adkins Application of theoretical constraints to model the measured temperature and wavelength dependence of collision-induced absorption in the 0.76 μm and 1.27 μm O ₂ bands P. Wcislo Ab Initio Calculations of Line-Shape Parameters for Spectroscopic Databases
12:20 –12:40	 O. Ben Fathallah Measurements of Line Intensities and self-broadening coefficients in the ν₂, ν₅ and ν₃+ν₆ Bands of Methyl Iodide S. Kassi The (2-0) R(0) and R(1) transition frequencies of HD at the Dn/n=10⁻¹⁰ level of accuracy from Doppler spectroscopy at 80 K 	P. Chelin Evaluating new settings and robustness for retrieved ammonia (NH ₃) total columns from the OASIS ground-based remote sensing observatory C. Janssen Multi-spectral ozone spectroscopy for atmospheric applications: Recent experimental results at 5 μm and 10 μm and open questions	broadening parameters for remote sensing of exoplanetary atmospheres E. M. Adkins Application of theoretical constraints to model the measured temperature and wavelength dependence of collision-induced absorption in the 0.76 μm and 1.27 μm O ₂ bands P. Wcislo Ab Initio Calculations of Line-Shape Parameters for Spectroscopic Databases
12:20 –12:40	O. Ben Fathallah Measurements of Line Intensities and self- broadening coefficients in the v ₂ , v ₅ and v ₃ +v ₆ Bands of Methyl Iodide S. Kassi The (2-0) R(0) and R(1) transition frequencies of HD at the Dn/n=10 ⁻¹⁰ level of accuracy from Doppler spectroscopy at 80 K Lunch time	P. Chelin Evaluating new settings and robustness for retrieved ammonia (NH ₃) total columns from the OASIS ground-based remote sensing observatory C. Janssen Multi-spectral ozone spectroscopy for atmospheric applications: Recent experimental results at 5 μm and 10 μm and open questions Lunch time	broadening parameters for remote sensing of exoplanetary atmospheres E. M. Adkins Application of theoretical constraints to model the measured temperature and wavelength dependence of collision-induced absorption in the 0.76 μm and 1.27 μm O ₂ bands P. Wcislo Ab Initio Calculations of Line-Shape Parameters for Spectroscopic Databases

14:40 – 15:20	G. MELLAU	N. BATALHA (online)	M. SPEARRIN (online)
	Experimentally-accurate complete molecular line lists	Building access and community standards for opacity data at the onset of next-generation atmosphere observations	Molecular line mixing effects at high temperatures and pressures: laboratory studies and sensing applications
15:20 – 15:40	T. Delahaye	M. Lepère	R. Georges
	Evaluation and validation of spectroscopic databases: the GEISA2020 update and the preparation of GEISA2022	Methane line shape parameter measurements by mid- infrared QCL dual-comb spectroscopy – first results	Non-LTE spectroscopy of the Tetradecad region of methane recorded in hypersonic flow
15:40 – 16:00	I. GordonCollaborative (COVID-perturbed) transition from	S. Perot	J. Harrison
	HITRAN2020 to HITRAN2024	Non-LTE Cavity Ring-Down Spectroscopy of ethylene around 1.67 µm: modelling the atmospheres of hot Jupiter exoplanets	Quantitative spectroscopic measurements of atmospherically important fluorinated species
16:00 – 16:20	R. Hargreaves	W. Fakhardji	R. Cole
	Updating the HITEMP database	Study of molecular absorption continua for telluric planets' atmospheres applications: calculations and measurements	(presented by G. Rieker) Improving optical absorption models for CO ₂ at high
16:20 – 16:40	Exhibitor – J. Schmitt (Bruker)	Exhibitor – J. Hayden (IRsweep)	pressure and temperature using dual frequency comb absorption spectroscopy up to 1000 K and 25 bar
16:40 -17:00	Coffee break	Coffee break	Coffee break
17:00 –18:30	Poster session 1	Poster session 2	
19:30		Banquet	