

NMR-based identification of specialized metabolites

Jean-Marc Nuzillard

Institut de Chimie Moléculaire de Reims (ICMR), UMR CNRS 7312, SFR CAP Santé, Université de Reims Champagne-Ardenne, France

jm.nuzillard@univ-reims.fr

Analysis of organic compound mixtures

- Steadily increasing interest for sources of renewable raw materials from plants
- > Medicinal drugs from **plants**
- Cosmetic ingredients from plants
- But: Plants rarely produce organic compounds in chemically pure state.
- > Mixture analysis plays a central role in plant chemistry.

Quick identification of **known** compounds

Structural dereplication

More time devoted to the study of **new** compounds

« CARAMEL » WORKFLOW

- Extract fractionation by Centrifugal Partition Chromatography (CPC)
 10 to 15 fractions
- > ¹³C RMN spectra of fractions
- ➤ "Binning" of NMR spectra (1200 bins, each 0.2 ppm wide)
- Intensity Table: each row is related to the chemical shift value at the center of a bin and each column is related to a chromatographic fraction. Empty rows are removed from the Table.
- Row permutations in order to group chemical shift values for which chromatographic profiles are similar
- Determination of chemical shift clusters that can be assigned to a single compound
- Compound identification by database querying

- Centrifugal Partition Chromatography
- Partition of analytes between two liquid phases
- > The column contains a high number of connected partition cells
- The stationary phase is maintained inside the column by action of the centrifugal force
- Analytes are injected in the first partition cells
- > The mobile phase percolates through the stationary phase
- > No irreversible adsorption on a solid stationary phase
- > Isocratic or graduated elution, "pH-zone refining", ion exchange
- > All what goes in finally comes out, from one side or the other
- ➢ High flow rates, 20 mL/min
- ➢ Injection of 5g in a 200 mL inner volume column

CPC is a preparative method

CPC

¹³C NMR

- ➢ Fractions from CPC are analyzed by ¹³C NMR
- > One carbon atom, one peak (Unless symmetry or accident occurs)
- Low probability of peak superimposition
- > Low sensitivity, presumably
- ➢ 600 MHz, cryoprobe, cooled ¹³C coil
- ➢ ¹H NMR
 - > Not always enough information there
 - Complex spectra due to homonuclear couplings
- > Other choices:
 - > Pure shift ¹H 1D NMR (difficult...)
 - > HSQC
 - ➤ HMBC

CREATION OF THE NMR DATA TABLE

- Automatic peak picking
- File conversion
- Alignment

SIMPLIFIED RAW DATA TABLE

REORDERED LINES IN DATA TABLE BY MEANS OF HIERARCHICAL CLUSTER ANALYSIS (HCA)

REORDERED LINES IN DATA TABLE BY MEANS OF HIERARCHICAL CLUSTER ANALYSIS (HCA)

- Group of chemical shift values that can be assigned to a **pure compound**
 - If a part of the list of chemical shifts is the one related to a known compound, how is it possible to find its structure?
 - The same question holds for a compound that was isolated in pure state.
 - Answering this question requires the availability of ad hoc databases.

THE THREE PILLARS OF STRUCTURAL DEREPLICATION

STRUCTURE (+ TAXONOMY)

- Considering only the set of known natural products improves search efficiency (300k?). Where to find them?
- ISDB <u>zenodo.org/record/5607264</u> About 200k structures + MS
- KNApSAcK <u>www.knapsackfamily.com/knapsack_core/top.php</u> was a first possibility. About 50k compounds. Closed source.
- COCONUT <u>coconut.naturalproducts.net/</u> has more compounds than KS but not all are natural (407k unique compounds). Open source.
- LOTUS lotus.naturalproducts.net/ is like COCONUT but more selective in its compound selection (276k compounds). It includes natively biological and chemical taxonomies, as well as links to Wikidata www.wikidata.org/wiki/. Open source.

STRUCTURE + ¹³C NMR

- The experimental ¹³C NMR data are scattered in chemical literature, are not exhaustive, and sometimes of low reliability.
- > **Predicted** data are a good alterative to experimental data.
- > Prediction requires quick, autonomous, and reliable predictors.
- > 200.000 seconds = 2 days, 7 hours, 33 minutes and 20 seconds
- Solution 1 : <u>mmrshiftdb.nmr.uni-koeln.de</u> with the Java code that allows for predictions locally. Very fast.
- Solution 2 : <u>www.acdlabs.com</u> ACD/Labs software and
 - "undocumented use" of the experimental chemical shift validation tool (quick, unattended, 2 compounds per second)
 - > accurate predictor (slow, GUI-driven, 1 minute per compound).

TWO DEREPLICATION STRATEGIES

> Initially Untargeted:

- The biggest possible collection of structures is associated with predicted spectroscopic data and with taxonomic information. This has to be carried out only at the time of database creation.
- The results of a structure search can be refined according to taxonomic criteria, if needed.

> Initially Targeted:

- The structures are first selected according to taxonomic criteria. The spectroscopic data are then predicted on demand on a small sized set of structures.
- Querying a targeted database is quick and provides pertinent structure proposals.

INITIALLY TARGETED STRATEGY

KnapsackSearch (KS) github.com/nuzillard/KnapsackSearch

- > Provide a list of genera related to an organism family to KS
- > Wikipedia is your friend
- > A Python script
 - Queries KNApSAcK through the web about each genus
 - Collects all found structures related to a family
 - Predicts chemical shifts with nmrshiftdb2
 - Creates a .sdf file ACD/Labs software can read
- Requires an internet connection (slow)
- Relies on the writing style of data sent back by the KNApSAcK web site (coding in HTML). Will not last forever.
- Relies on RDKit <u>https://www.rdkit.org/</u>

INITIALLY TARGETED STRATEGY

VersaDB <u>https://github.com/simremy/versadb_tk</u>

- Developed by Simon Remy and Julien Cordonnier, @URCA
- ➢ GUI software
- Compound selection by biological and chemical taxonomy
- Queries LOTUS through the Internet
- > RMN data prediction by nmrshiftdb2
- ➤ MS² data prediction by CFM-ID 4.0
- Relies on a connection to the Internet
- Relies on RDKit
- Should be published soon...

INITIALLY UNTARGETED STRATEGY

> History : SISTEMAT Knowledge Base, Pr. VdP Emerenciano, Brazil

- \succ Beginning of the 1990's.
- > The Three Pillars of Dereplication were already there
- Closed source databases and software

- « Predicted NMR of Natural Products » (PNMRNP), @ICMR
 - Starting from ISDB and NMR-supplemented using nmrshiftdb2
 - > Proof of principle, practical use is not recommended.

INITIALLY UNTARGETED STRATEGY

> ACD_LOTUS

- Structures from LOTUS, supplemented with predicted NMR data
 - Uses ACD/Labs quick validation algorithm for predictions
- Uses RDKit and the tools developed for KS et PNMRNP
- > 218.478 structures in LOTUS v9
- zenodo.org/record/7124055 .sdf zipped file
- Structures and spectra merged into nmrshiftdb2 by Stefan Kuhn
- > The publicly available .sdf file can be imported in ACD/Labs
 - Using acd_lotusv9.NMRUDB does not required a connection to the Internet

EXAMPLE, ACD_LOTUS

- > Structure selection of a known specialized metabolite
- \succ Copy the list of the associated ¹³C NMR chemical shift values
- Look for matching compounds by means of the
 ACD/Labs database search tool
 - nmrshiftdb2 search tool

EXAMPLE, ACD_LOTUS – ELLIPTICINE

bmse001340 - Data

Ellipticine synonyms

Ellipticine in the Biological Magnetic Resonance data Bank (BMRB)

bmrb.io/metabolomics/metabolomics_standards.php?dataset=metabolomics

Filter by dataset NMRFAM highly curated metabolites v Go FAM : Facility at Madison (Wisconsin) Jump to molecules beginning with: A B C D E F G H I J K L M N O P Q R S T U V X Z

FOR WOOD AND NMR LOVERS

<u>https://bmrb.io/metabolomics/metabolomics_standards.php?</u>

dataset=NMR+Database+of+Lignin+and+Cell+Wall+Model+Compounds

Filter by dataset USDA lignin components

✓ Go

A description of these data, collected by Sally Ralph and Larry Landucci at the USDA Forest Products Lab, and John Ralph's group at the USDA Dairy Forage Research Center and (more recently) the UW Biochemistry Department, is available as a **pdf** file. This includes a description of the naming conventions used as well as experimental conditions and a structure index.

Jump to molecules beginning with: A B C D E F G H I L M O P S T V X

1-(4-acetoxy-3,5-dimethoxyphenyl)-	1-(4-acetoxy-3,5-dimethoxyphenyl)-	1-(4-acetoxy-3,5-dimethoxyphenyl)-
1,3-diacetoxy-2-(2-	1,3-diacetoxy-2-[4-(1-acetoxyethyl)-	1,3-diacetoxy-2-[4-(1-acetoxyethyl)-
methoxyphenoxy)propane	2,6-dimethoxyphenoxy]propane	2-methoxyphenoxy]
1-(4-acetoxy-3,5-dimethoxyphenyl)-	1-(4-acetoxy-3,5-dimethoxyphenyl)-	1-(4-acetoxy-3,5-dimethoxyphenyl)-
1,3-diacetoxy-2-[4-(1-	2-(4-acetoxy-2-methoxyphenoxy)-	2-(4-acetyl-2,6-dimethoxy
acetoxyethyl)phenoxy] propane	3-hydroxypropan-1-one	phenoxy)-3-hydroxypropan-1-one
1-(4-acetoxy-3,5-dimethoxyphenyl)- 2-(4-acetylphenoxy)- 3-hydroxypropan-1-one	1-(4-acetoxy-3,5-dimethoxyphenyl)- 3-hydroxy-2-(2- methoxyphenoxy)propan-1-one	2-(4-Acetyl-2,6-dimethoxyphenoxy)- 1-(3,4,5-trimethoxyphenyl)ethanone

Set 1

Sample: 5mg in DMSO, ref: TMS Conditions: temperature: 298K Spectrometer: Bruker Avance III - 500MHz

Atom ID	Value	Ambiguity Code
C1	14.3692	1
C2	11.9824	1
C3	119.191	4
C4	127.1373	4
C5	123.8352	4
C6	110.7067	4
C7	115.8997	1
C8	140.5188	1
C9	149.7257	1
C10	128.066	1
C11	132.4729	1
C12	108.0425	1
C13	123.1352	1
C14	121.9748	1
C15	142.6759	1
C16	123.3902	1
C17	140.5486	1

Experimental values

3: 1D 13C

Sample: 5mg in DMSO, ref: TMS Conditions: temperature: 298K Spectrometer: Bruker Avance III - 500MHz

NSC 71795 CID_3213 cq_05830 in DMSO, position 204 C13CPD_MMCD (zgpg30) 150 100 50 [ppm]

Download time domain data: bmse001340_3.zip

BACK TO ELLIPTICINE

Open file acd_lotusv9.NMRUDB

Query

ELLIPTICINE

ELLIPTICINE

			السارية		14 44		P	4P	%	₩ -@	Atom No.	# 	13C Shift 🗜	1H Shi	🤍 🗧	:	
										Ĩ	1		12.0				
											2	_	111.99				
											3		132.45				
											4		115.9				
											5		140.5				
											7		149.7				
											8		122.0				
											9		128.1				
				CH ₃							10		14.4				
			F115 01	[12.0]	,						11		125.75				
		[140	[115.9] [15] [132	(111.99 (45] [1	NH 40.55						12		140.55				
]]	[14	2.7[110.7]					14		142.7				
		N	[149.7]	[128.1]	^{25.} /51 [122.5:	5] [127.]	151				15		110.7				
					[123	811921	-				16		127.15				
				[14.4]		[]					17		119.2				
											18	_	123.8				
		CH3	3								19		122.55				
	\sim	\mathbf{x}	.NH														
ſ	Y	// `	Γ	<u> </u>													
Ň		<	上 /	~~~													
	\sim	Ý	11		\rangle												
		CH-	, U	/													
		0.13	5														

<

Predicted 13C shifts: 1[1] 12.00 ; 2[2] 111.99 ; 3[3] 132.45 ; 4[4] 115.90 ; 5[5] 140.50 ; 7[7] 149.70 ; 8[8] 1

ELLIPTICINE IN WIKIDATA

Wikidata acts as central storage for the structured data of its Wikimedia sister

Special pages

Permanent link

through content designed to get you up to speed and feeling comfortable with the fundamentals in no time.

ELLIPTICINE

<u>F</u> ichier Éditio <u>n</u> <u>A</u> ffichage	<u>H</u> istorique <u>M</u> arque-pages <u>O</u> utils A	lid <u>e</u>				-	o ×			
🔹 💵 ellipticine - Wikidata × +										
\leftarrow \rightarrow C \textcircled{a}	O A = https	s://www. wikidata.org /wiki/Q10359556			\$	⊠ ∥\ 🕮	ර =			
Q Débuter avec Firefox										
			2	🗛 English 💄 Not Io	ogged in Talk Contri	ibutions Create account	it Log in			
	Item Discussion		Read	View history	Search Wikidata	(<u>২</u> -			
WIKIDATA	ellipticine (Q14 chemical compound	0359556)			∕ edit					
Main page Community portal Project chat Create a new Item Recent changes	NSC-71795 Elliptisine N → In more languages	SC 71795 ellipticines			-					
Random Item	Statements									
Nearby	instance of	echemical compound	n edit							
Donate Lexicographical data		▼ 0 references	+ add refer	ence						
Create a new Lexeme Recent changes Random Lexeme		carbazole alkaloid	sedit 🖍							
Tools										
What links here Related changes		type of chemical entity	n edit							
Special pages Permanent link		▼ 0 references								

Tim

ELLIPTICINE

found in taxon

9	Ochrosia elliptica		🗨 edit
	▼ 5 references		
	stated in	The biogenetic, synthetic and biochemical aspects of ellipticine, an antitumor alkaloid	
	stated in	Fluorodensitometric assay of 6H- pyrido[4,3-b]-5,11- dimethylcarbazoles (ellipticine and derivatives) biosynthesized by Ochrosia elliptica cultures in vitro	
	stated in	Antitumor alkaloids in callus cultures of Ochrosia elliptica	
	stated in	Alkaloid Production by Ochrosia elliptica Cell Suspension Cultures	
	stated in	Alkaloids of Ochrosia elliptica Labill.1)
			+ add reference
	Ochrosia moorei		nedit

1 reference

KILIER

+ add statement

ELLIPTICINE

April 20, 1959

ALKALOIDS OF Ochrosia elliptica LABILL. 1903

[CONTRIBUTION FROM THE LABORATORY OF CHEMISTRY OF NATURAL PRODUCTS, NATIONAL HEART INSTITUTE, NATIONAL INSTITUTES OF HEALTH]

Alkaloids of Ochrosia elliptica Labill.¹

BY SIDNEY GOODWIN, A. F. SMITH² AND E. C. HORNING

RECEIVED JULY 28, 1958

Four alkaloids have been isolated from leaves of Ochrosia elliptica Labill. One has been shown to be identical with isoreserpline. The other three, ellipticine, methoxyellipticine and elliptinine, have been characterized and certain features of their structures have been suggested.

ELLIPTICINE – INITIALLY TARGETED STRATEGY

Apocynaceae alkaloids

🛗 Search Data	×
Data Name(s):	Condition: Veice:
x v BIO_FAMILY	V Indudes V Apocynaceae
Case Sensitive	Use Wildcards (*, ?)
More Less Query	Save Delete OK Cancel Help
	🛗 Search Message 🛛 👋
	5549 hits found for your query
	OK
🔠 Search Data	×
Carch Data Data Name(s):	Condition: Valuer
Search Data Data Name(s): x v npclassifier_01pathway	Condition: Value: Value: Includes Value:
Search Data Data Name(s): x npclassifier_01pathway Case Sensitive	Condition: Valuer Includes Alkaloid ~
Search Data Data Name(s): x npclassifier_01pathway Case Sensitive More Less Query	X Condition: Valuer
Search Data Data Name(s): x npclassifier_01pathway Case Sensitive More Less Query	Condition: ✓ ✓ Includes ✓ Includes ✓ Alkaloid ✓ Save Delete OK ✓ Save ØK Cancel Help March Message
Search Data Data Name(s): x npclassifier_01pathway Case Sensitive More Less Query	Condition: Use Includes Alkaloid Use Wildcards (*, ?) OK Save Delete OK Cancel Help Search Message 2376 hits found for your query

ELLIPTICINE

EXAMPLE, NMRSHIFTDB2 – ELLIPTICINE

Query

14.3692 11.9824 119.1910 127.1373 123.8352 110.7067 115.8997 140.5188 149.7257 128.0660 132.4729 108.0425 123.1352 121.9748 142.6759 123.3902 140.5486

Current usage is: Registered Users: 2138 Structures: 258158 Spectra: Measured 53954, calculated 396566

<u>Impressum</u>

Switch to expert search mode

Browse all structures

ELLIPTICINE

total similarity _____ 13C spectrum search _____ 14.3692|11.9824|119....

Spectral Data Additional Data Download

Results: 300

Browse: 1 2 3 4 5 6 7 8 9 10 >>

Similarity: 90.15 %

Similarity: 82.55 %

Atom	Mult.(coupling const.)	Prediction Shift	Input Shift	Diff. M-I	Prediction 0 hose_lotusv7
1	Q	14.40	14.3692	0.03	14.32
2	Q	12.00	11.9824	0.02	11.6
3	D	119.20	119.191	0.01	120.19
4	D	127.15	127.1373	0.01	125.25
5	D	123.80	123.3902	0.41	123.06
6	D	110.70	108.0425	2.66	111.2
7	D	115.90	115.8997	0.00	115.7
8	D	140.50	140.5188	0.02	142.2
9	D	149.70	149.7257	0.03	150.2
10	S	128.10	128.066	0.03	128.34
11	S	111.99	110.7067	1.28	111.0
12	S	132.45	132.4729	0.02	130.38
13	S	122.55	123.1352	0.59	121.95
14	S	122.00	121.9748	0.03	125.6
15	S	142.70	142.6759	0.02	140.95
16	S	125.75	123.8352	1.91	124.83
17	S	140.55	140.5486	0.00	136.36

Threshold is 5.88

Search for complete spectrum: Similarity measure for the complete spectrum in this record is 92.92.

TAKE HOME MESSAGE

- The SDF-formatted acd_lotusv9 database is available from <u>https://zenodo.org/record/7124055</u>
- The acd_lotusv9.sdf file can be imported as a searchable database file in ACD/Labs software products
- The structures and chemical shift values from acd_lotusv9 are already searchable in <u>https://nmrshiftdb.nmr.uni-koeln.de/</u>
- The assessment of the known compound identification process was carried out on a small set of 58 secondary metabolites. The results of this study should be published soon.

Natural Products Chemistry Team @ICMR

