Improving Efficiency and Labor Conditions with the Help of AI the case of smart-viticulture

Symposium Transdisciplinary research for a healthy planet

AGRICULTURE AND AUTOMATION, A LONG HISTORY

- Agriculture is the oldest and still the most important economic human activity
 - provide food, fibers, and fuel necessary for our survival
- Technology reduces the amount of time people dedicate to basic activities like food production and made life easier and enjoyable.
- Transportation has changed over time to be more efficient and safer.
 - Agriculture has also undergone the same changes.
- With the global population expected to reach 9 billion by 2050, agricultural production must meet the increasing demands for food and bioenergy.

2

IMPACT OF TECHNOLOGY

- Changes in equipment have made a large impact on the way farmers are able to farm and grow food.
- Farmers use technology to make advances in producing more food for a growing world.

3

WHAT IS SMART AGRICULTURE

- Smart Agriculture represents the application of modern Information and Communication Technologies (ICT) into agriculture.
 - combined application of ICT solutions such as precision equipment, IoT sensors, GPS, Big Data, drones, robotics, etc.
- Smart Agriculture has a real potential to deliver a more productive and sustainable agricultural production, based on a more precise and resource-efficient approach.
 - In the USA about 80% of farmers use some kind of Smart Agriculture tools
 - in Europe, this is less than 25%

Smart Agriculture Main Areas

- Smart Agriculture provides added value for better decision making or more efficient exploitation and management:
 - Management Information Systems: collection, processing, and disseminating of data needed to carry out a farm's operations and functions.
 - Precision Agriculture: management of spatial and temporal variability to improve economic returns and reduce environmental impact
 - relay on GPS, drones and satellites, allowing the creation of maps with target variables.
 - Ex: crop yield, terrain features, organic matter content, moisture levels, nitrogen levels, etc.
 - Agricultural automation and robotics: The process of applying robotics, automatic control and artificial intelligence techniques at all levels of agricultural production, including farmbots and farmdrones.

The Potential of AI in Transforming the Industry

- Smart Agriculture has a huge potential but also a big problem
 - Too much data disables your decision making
- So many products, so many "index", which one to use?
 - Shall I use NDVI* or moisture levels to drive my choices?
 - How these index affect my plants?
 - Are they dependent on other factors?

6

• AI helps to give a direction and a cursor to explore these data.

WHAT IS ARTIFICIAL INTELLIGENCE

- Artificial intelligence (AI) refers to the simulation of human intelligence.
 - may also be applied to traits associated with a human mind such as learning and problem-solving.
- A subset of AI is machine learning (ML), which refers to the concept that computer programs can automatically learn from new data.
 - Learn by example
- Deep learning techniques enable automatic learning through the absorption of unstructured data such as text, images, or video.
 - Automatic pattern detection

BUT WHAT KIND OF DATA CAN WE DEAL WITH?

AI has hundreds of algorithms, one probably fits your problem

- Image analysis
 - RGB/hyperspectral photos, topographical maps, meteorological charts
- Aggregation of sensors' data
 - Agricultural sensors
- Time series
 - Yield and climatological history, volume of intrants, costs...
- All you need is an **objective** and sufficient data

WHAT IT COSTS TO MAKE AI?

- Any newspapers say that training an IA model requires a lot of data and huge computing resources
 - Partially true
- Data
 - More data often leads to better results
 - Several models can work fine with less than a hundred entries
- Computing resources
 - Complex Deep Learning models take time to train (especially with lots of data)
 - Dedicated infrastructures help to accelerate training, but are not required
- Bonus: deep learning often allows the reuse of existing models

AND TO USE AI? DO WE NEED A GOOD MACHINE?

- A trained model is often simple to run
 - We all have IA applications in our telephon

- Cloud computing is also an option
 - Requires only a working network

 An IA model can be deployed close to the final user
 → Edge computing

How IA can Innovate the Champagne *Savoir-Faire*

- Champagne production follows a strict regulation chart
 - Tradition is the main keyword
- Many activities require direct human intervention
 - Plot labor, harvest, wine blend
- Potential for improvement on both performance and working conditions
 - Logistics organization
 - Automation of repetitive tasks
 - Assessment uniformization
 - Predictive management

WINE PRODUCTION FORECAST

- Ideally, estimations as soon as possible:
 - Decision-making to preserve the fruits quality
 - Preparer the harvest logistics
 - Respect the appellation rules (quotas)
- Production forecast formula:
 Production = Nb plants x Nb grapes x Average grape weight
- Assessing the production today:
 - Random fruit sampling
 - Weighting and counting

- Manual and limited:
 - Time-consuming (how many people to cover a vineyard?)
 - Variability according to the parcels
 - Limited number of samples as it is a destructive process

12

REAL-TIME GRAPE COUNTING

Benefits of automatic grape counting

Yield (t/ha

- Less error due to parcel variability
- Elaboration of productivity charts

Production = Total Nb grapes x Average grape weight

13

• All during the regular vineyard labor (no extra tasks for the workers)

YIELD PREDICTION

- We can go further and estimate the yield with:
 - Correlation between visible and hidden grapes
 - Counting of berries in a grape (grape size/weight)
- Yield prediction = logistics organization

Number of visible x total grapes

Production = Total Nb grapes x <u>Average grape</u> weight

(a) Original Photo

(c) Segmentation

(f) Berry Adjust-

(g) 3D Bunch

Transdisciplinary research for a healthy planet

ment

WINTER PRUNING AUTOMATION

- Winter pruning is labor-intensive
 - Manual operation in unpleasant weather
 - Shortage of skilled workers
- Even if pre-pruned by machines, require finishing by hand
- AI model for detection of spur and robotic pruning

Transdisciplinary research for a healthy planet

15

DISEASE DETECTION AND CONTROL

- Many disease detection products rely on fixed conditions
 - Ex : **Downy Mildew** incubation cycle (1936)
 - Specific conditions of temperature, humidity and wind that favor the infection
- IA solutions rely on data from agricultural sensors and observations on the field, without « a priori »
 - Adapted for each user case
 - Answer the question "Why mildew infection occurs in my vineyard and not on my neighbor's one?"
- Better detection and reduced quantity of phytosanitary products

GRAPE QUALITY ASSESSMENT

- Assessment is performed in pressing sites at the arrival of the grapes
 - General aspect
 - Presence of diseases
 - Chemical analysis (sugar, acidity)
- All visual inspection is repetitive and subjected t human error
- AI models for disease detection and automatic grading
 - Operators are freed to perform other tasks

IMPACT OF AI ON PRODUCTION AND LABOR CONDITIONS

- Most of these examples aim at improving productivity
 - Extract business knowledge from data
 - Estimation of necessary resources
 - Business planning
- Also **positive impact** on labor conditions
 - Less repetitive tasks
 - Less exposure to bad weather conditions
 - Mitigate labors' shortage

CHALLENGES AND LIMITATIONS

- Smart-viticulture is a tool, not an objective
 - Decision-making tools
 - Automation of specific tasks
 - Interesting only if adds value to the products
- We cannot fully replace the human beings
 - Even advanced IA models can perform only one task
 - Viticulture has thousands of tasks and procedures
 - Data is still limited long plant lifecycle
 - Living beings always surprise us with new behaviors
 - Plants too!!!

FUTURE DIRECTIONS AND POSSIBILITIES FOR AI IN VITICULTURE

- Vineyard robots are becoming common
 - However, only for tasks such as plowing, hoeing or weeding.
 - **Legislation** still restrictive about unsupervised operation of robots.
- More opportunities for AI on data assimilation and decision-making
 - Adding value to data from precision agriculture.
 - Al needs to be precise AND generalizable.
- Ethical implications of AI in viticulture
 - Most wines follow strict production rules.
 - Introduction of AI and automation is a curiosity for now, what about its massification?

CONCLUSION

- As everywhere, Artificial Intelligence opens **opportunities** for automation and decision-making.
- The first wave of smart agriculture contributed to data gathering but not to knowledge extraction
 - It is up to the final users to identify objectives and usages
 - Al can help to give a sense to all this data
- Repetitive tasks or in poor conditions are natural candidates for automation
 - Improve productivity
 - Improve working conditions
 - Free the workers to do more relevant tasks
- AI does not solve all problems, and is still far from generalization
- Changes in the production methods require concertation and parsimony
 - Added value is a good indicator

KEY TAKEAWAYS FROM THE PRESENTATION

- <u>Al is here</u> and can be used in several ways
- Many efforts to bring IA to the workplace
- Al models require a well-defined problem and sufficient data
- Deep Learning allows fast prototyping by reusing other models (transfer learning)

