Building the Climate-(Food)-Water-(Energy)-Ecosystem Nexus for guiding sustainable development

and Analyses in C

Predictio, enviroSPACE

by Prof. Anthony Lehmann

Reims. March 31. 2023

12110


Rough timeline	Framing of conservation	Key ideas	Science underpinning		
	000 Nature for itself	Species Wilderness Protected areas	Species, habitats and wildlife ecology		
	0001 0001 0001 0001 0001 0001 0001 000	Extinction, threats and threatened species Habitat loss Pollution Overexploitation	Population biology, natural resource management		
	Nature for people	Ecosystems Ecosystem approach Ecosystem services Economic values	Ecosystem functions, environmental economics		
	People and nature	Environmental change Resilience Adaptability Socioecological systems	Interdisciplinary, social and ecological sciences		

What conservation do we want?

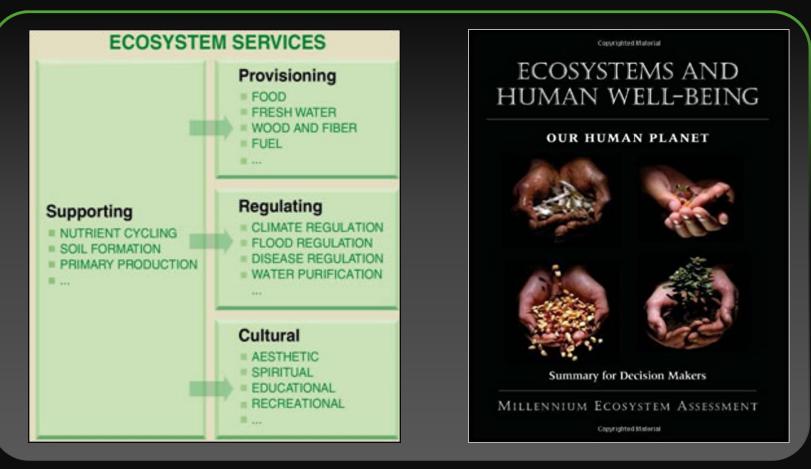
The perception of biodiversity conservation has changed over the past 50 years

Mace 2014. Science 245

Healthy Ecosystems Provide ES to SDGs like in forests

Familiar Forest Goods and Services Support SDGs

Hidden Ways Deforestation Undermines SDGs

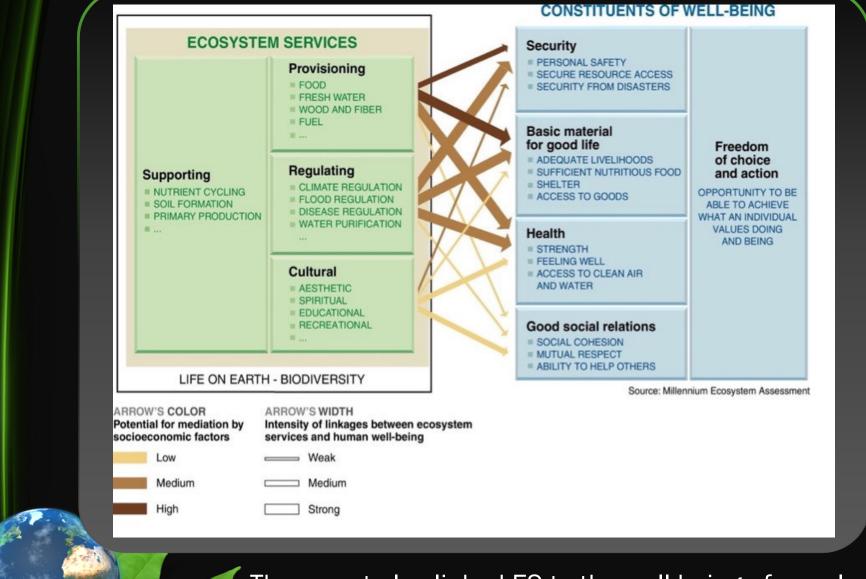


https://www.cgdev.org/sites/default/files/Seymour-Busch-why-forests-why-now-full-book.PDF https://wri-indonesia.org/en/blog/forestsand-sdgs-taking-second-look

Part 1

EVOLUTION OF THE ECOSYSTEM SERVICES CONCEPT

Millenium Ecosystem Assemment

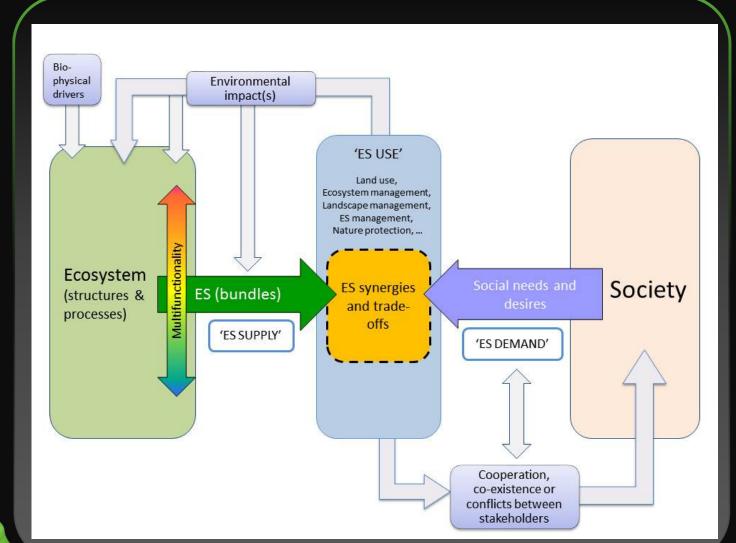


This report widely disseminated the concept of ES with its classification as:

- Support
- Supply
- Regulation
- Cultural

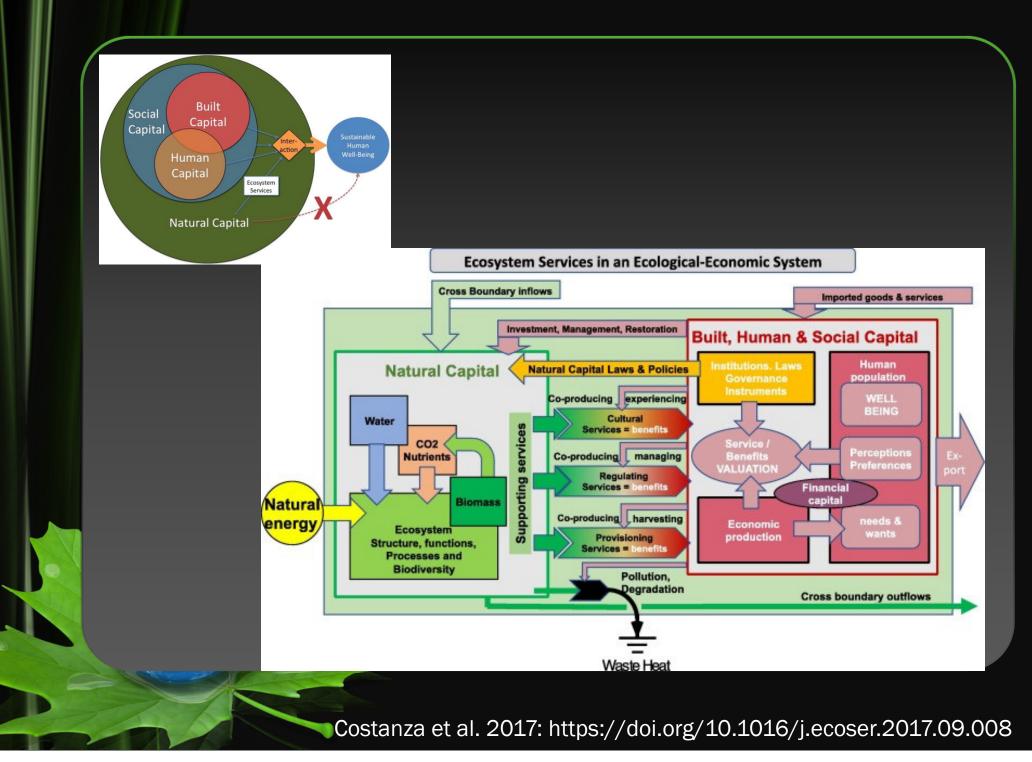
UN, MEA 2005

Millenium Ecosystem Assessment



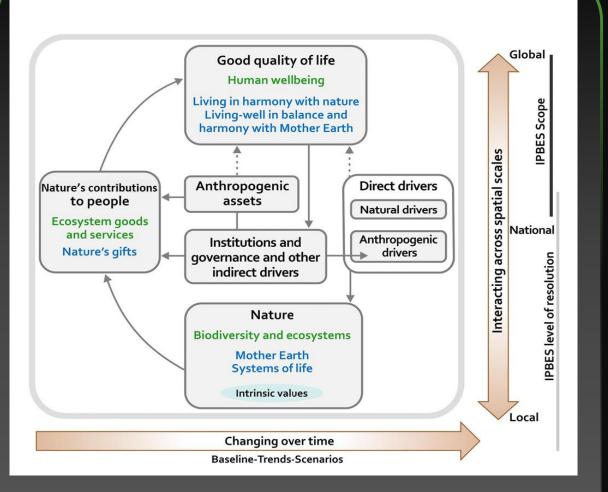
The report also linked ES to the well-being of people

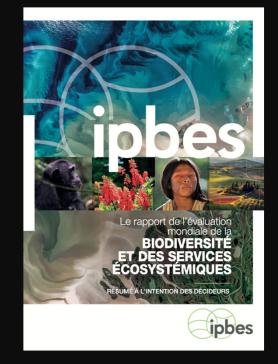
UN, MEA 2005


Tradeoffs & Synergies

When the supply of ecosystem services meets the demand for synergies are possible and necessary tradeoffs

http://www.openness-project.eu/library/referencebook/sp-ecosystem-service-trade-offs-and-synergies


20 years of Ecosystem Services: synthesis


Part 2

EVALUATION OF ECOSYSTEM SERVICES

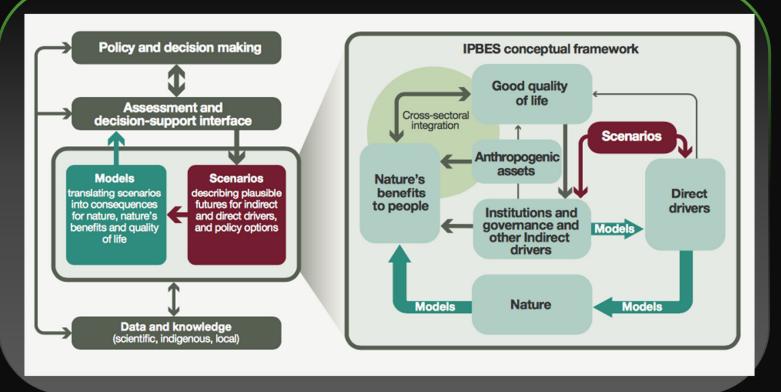
IBPES Conceptual Framework



Concepts de la science Autres systèmes de connaissance

- "Nature," "nature's contributions to people" and "good quality of life" are inclusive categories that have been identified in a participatory process.
- This includes other knowledge systems, such as those of indigenous peoples and local communities.

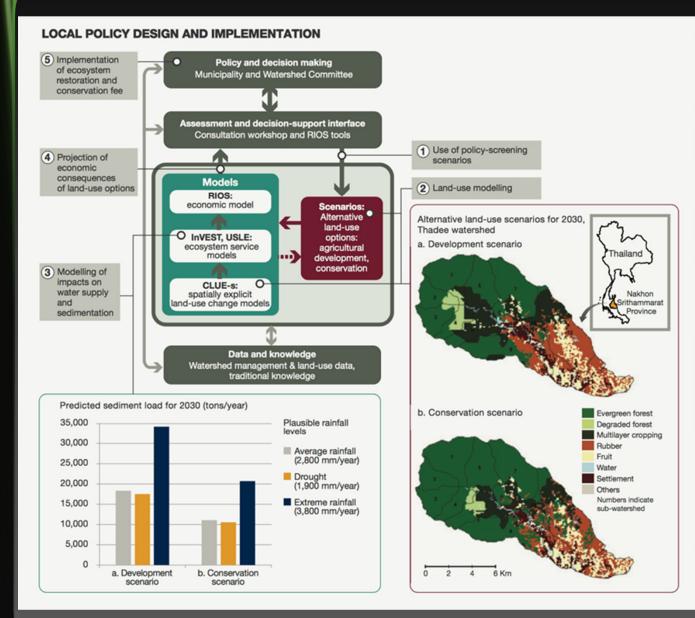
https://ipbes.net/global-assessment



The methodological assessment report on SCENARIOS AND MODELS OF BIODIVERSITY AND ECOSYSTEM SERVICES

SUMMARY FOR POLICYMAKERS

ipbes


Scenarios and models

The panel on the left points out that scenarios and models are directly dependent on data and knowledge for their construction and testing and add value by synthesizing and organizing knowledge.

The right panel provides a detailed view of the relationships between scenarios, models and key elements of the platform's conceptual framework

Scenarios and models

Thadee watershed, Thailand, where farmers' water supply and household consumption have been degraded by the conversion of natural forests to rubber plantations.

Part 3

TOOLS AND DATA FOR THE EVALUATION OF ES

Data and Tools

The data and models used are intimately linked to the biodiversity and ecosystem services assessment process.

Specific tools have been developed at different scales with varying degrees of complexity.

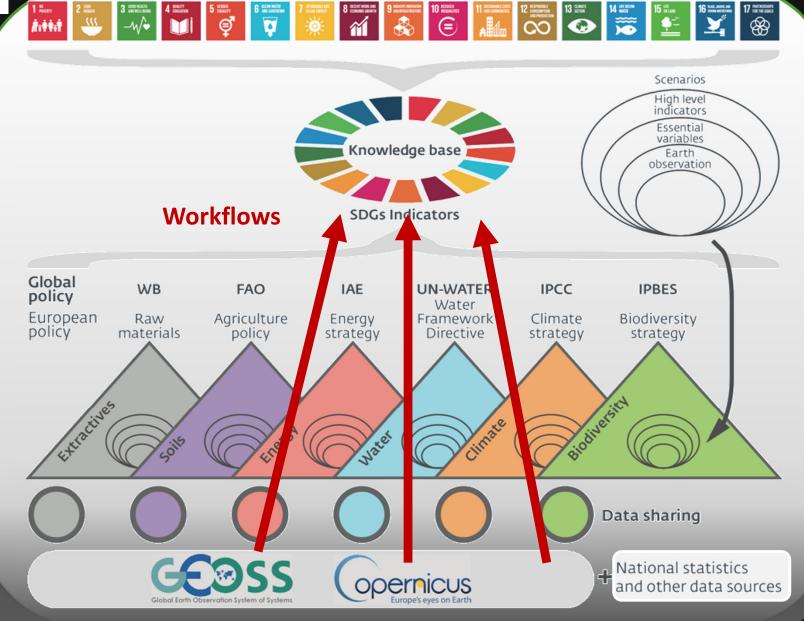
TOOL	MODEL TYPE SPATIAL AN TEMPORAL EXTENT		EASE OF USE	COMMUNITY OF PRACTICE	FLEXIBILITY	REFERENCE	
IMAGE	Process	Global, dynamic	Difficult	Small	Low	Stehfest <i>et al.</i> , 2014	
EcoPath with EcoSim	Process	Regional, dynamic	Medium	Large	High	Christensen <i>et</i> <i>al.</i> , 2005	
ARIES	Expert	Regional, dynamic	Difficult	Small	High	Villa <i>et al.</i> , 2014	
InVEST	Process and correlative	Regional, static	Medium	Large	Medium	Sharp <i>et al.</i> , 2014	
TESSA	Expert	Local, static	Easy	Small	Low	Peh <i>et al.</i> , 2014	

https://www.ipbes.net/document-library-categories/assessment-reports-and-outputs

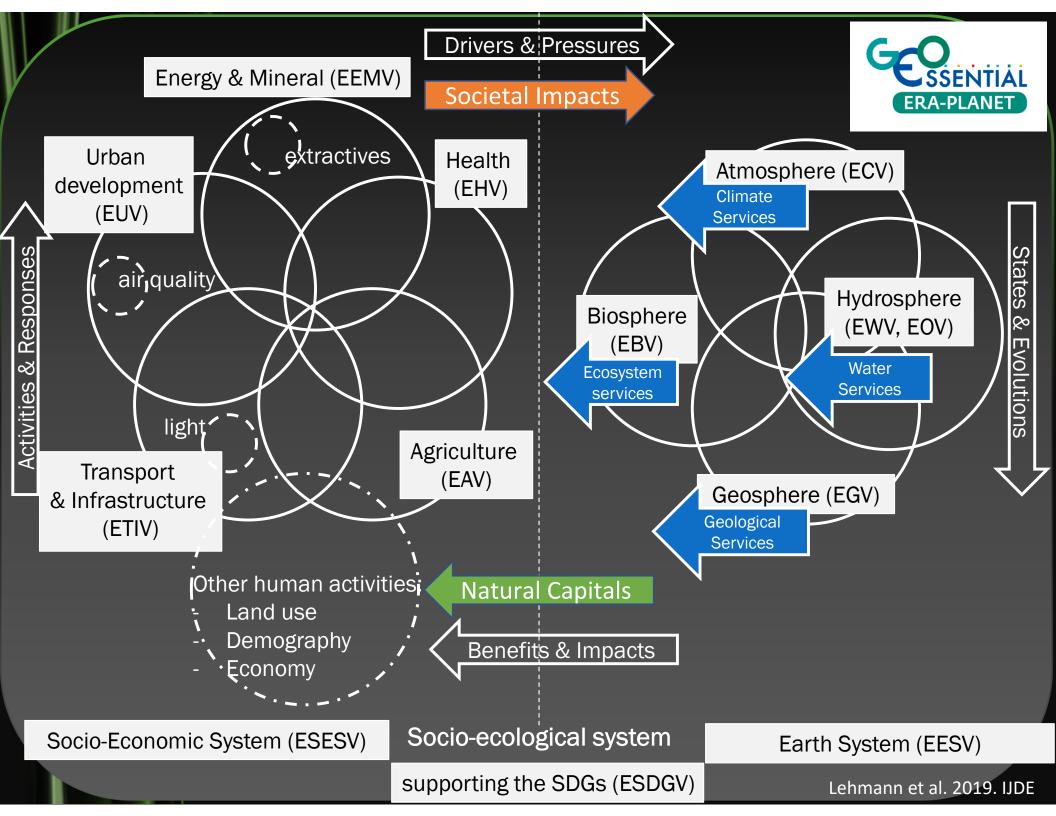
Essential Biodiversity Variables (EBVs)

G**€⊃** B�N

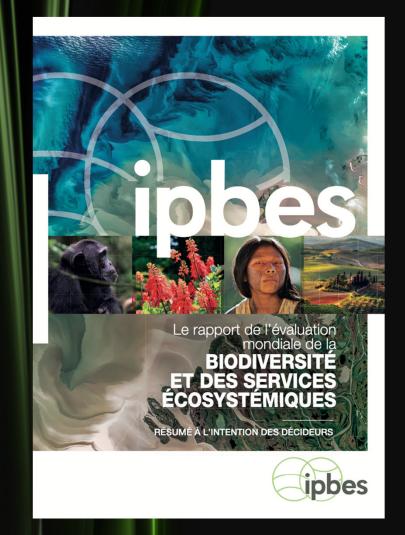
EBV classes	Candidates	Scenarios for biodiversity
Genetic composition	Co-ancenstry Allelic diversity Population genetic differentiation Breed and variety diversity	& ecosystem services (e.g. for IPBES)
Species populations	Species distribution Population abundance Population structure	High-level indicators of biodiversity & ecosystem services (e.g. for CBD)
Species traits	Phenology Body mass Natal dispersion distance Migratory behavior Demographic traits Physiological traits	(slow changing) valuation & other data Observations of drivers & pressures Observations of policy & management Variables Genetic composition Community composition
Community composition	Species richness Species interactions	Species populations Ecosystem structure
Ecosystem function	Net primary productivity Secondary productivity Nutrient retention Disturbance regime	Species traits Ecosystem function Primary observations of change in state of biodiversity
Ecosystem structure	Habitat structure Ecosystem extent and fragmentation Ecosystem composition by functional type	In-situ Remote monitoring sensing


Essential variables of biodiversity are defined as the derived measures needed to study, report and manage changes in biodiversity, focusing on the state and trend of biodiversity elements. They provide the first level of abstraction between low-level primary observations and high-level biodiversity indicators.

https://geobon.org/ebvs/what-are-ebvs/


GEOEssential project

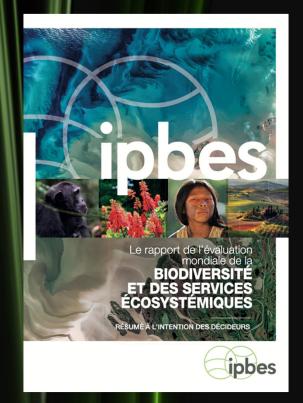
GEOEssential general framework linking data sources to policy indicators through Essential Variables


www.geoessential.eu

Lehmann et al. 2019. IJDE

Part 4

GLOBAL IPBES ASSESSMENT



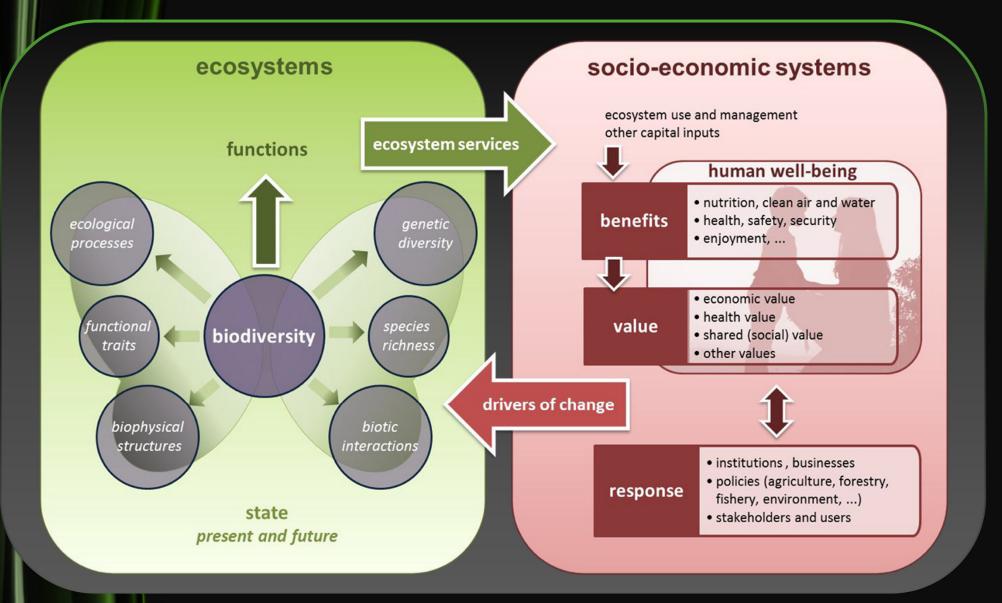
To reconcile the global visions around the concept, the IPBES now proposes to talk about Nature's Contributions to Populations, and has made a first comprehensive assessment of it.

https://ipbes.net/global-assessment

Figure SPM 1 Tendances mondiales de la capacité de la nature à maintenir ses contributions à une bonne qualité de vie, de 1970 à aujourd'hui, illustrant un déclin pour 14 des 18 catégories de contributions analysées.

Impacts of land use and climate change on biodiversity and material and regulatory NCPs between 2015 and 2050.

IPBES Global Assessment



(i) impacts are lowest in the global sustainability scenario in almost all sub-regions, (ii) regional impact differences are high in the regional competition and economic optimism scenario and (iii) material ASCs increase the most in regional competition and economic optimism scenarios, but this is at the expense of biodiversity and ASC regulation.

Part 5

ECOLOGICAL INFRASTRUCTURES

European conceptual framework for SE

http://ec.europa.eu/environment/nature/knowledge/ecosystem_assessment/pdf/MAESWorkingPaper2013.pdf

Mapping ecosystem services

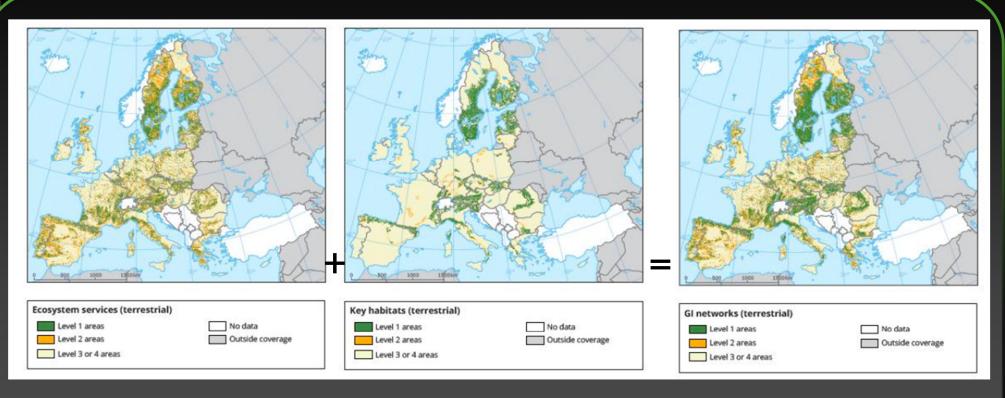
Mapping and Assessment of Ecosystems and their Services

An analytical framework for ecosystem assessments under Action 5 of the EU Biodiversity Strategy to 2020.

Discussion paper - Final, April 2013

Mapping and Assessment of Ecosystems and their Services

Mapping and assessing the condition of Europe's ecosystems: Progress and challenges


3rd Report - Final, March 2016

Environment

http://ec.europa.eu/environment/nature/knowledge/ecosystem_as sessment/pdf/MAESWorkingPaper2013.pdf

http://ec.europa.eu/environment/nature/knowledge/ecosystem _assessment/pdf/3rdMAESReport_Condition.pdf

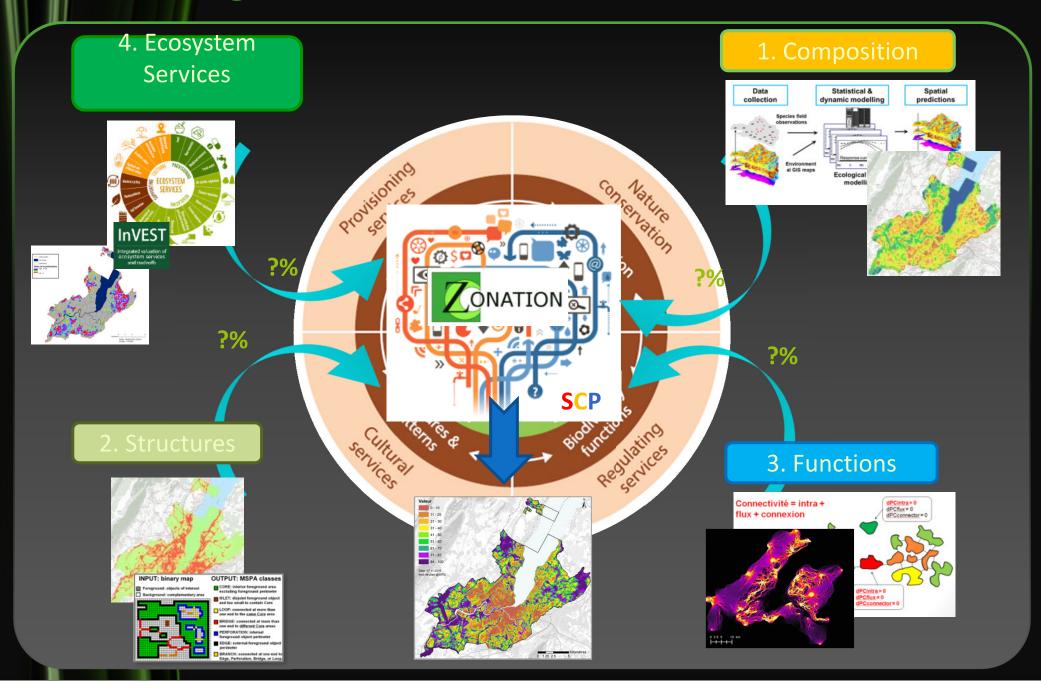
European scale: Ecological infrastructure

27% of EU-27s could be part of the IE "C" network, the largest contribution from regions with the greatest capacity to provide ecosystem services.

17% of the EU's territory could correspond to EI's 'R', mainly defined by limited service areas.

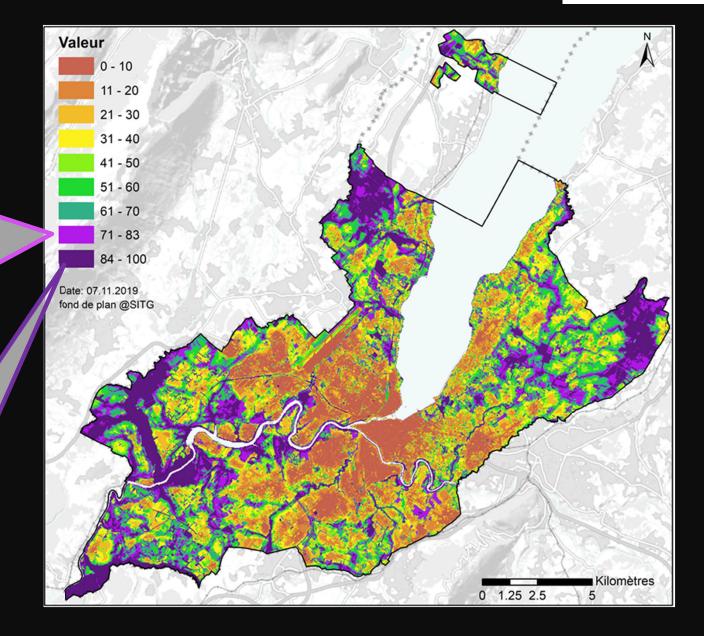
EEA, 2014

Biodivesity Strategy - Geneva



h e p i a

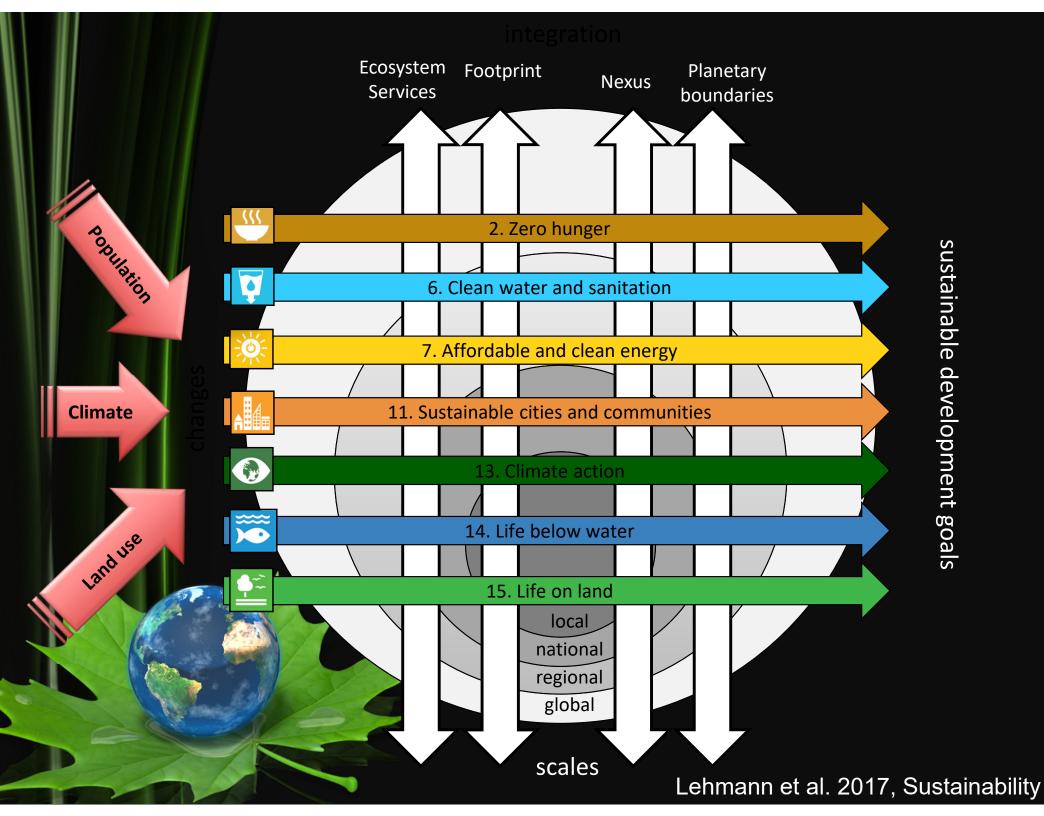
Haute école du paysage, d'ingénierie et d'architecture de Genève


Geneva Ecological Infrastructure

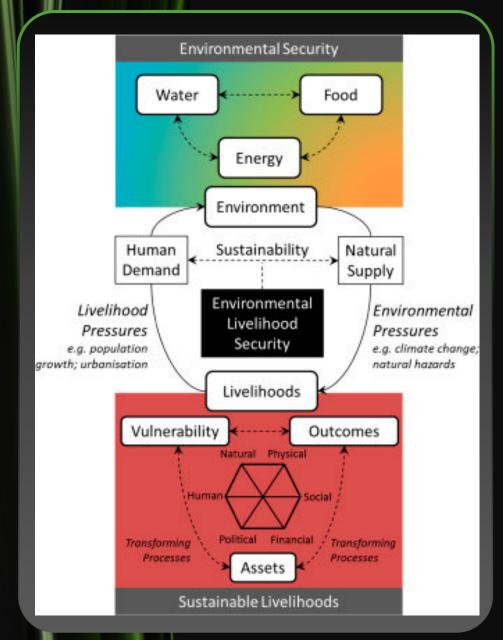
Infrastructure Ecologique de Genève

13% additional networking of main habitats

17% of the most interesting areas including existing protected areas. This correpsond to the main habitats and the CBD Aichi Object

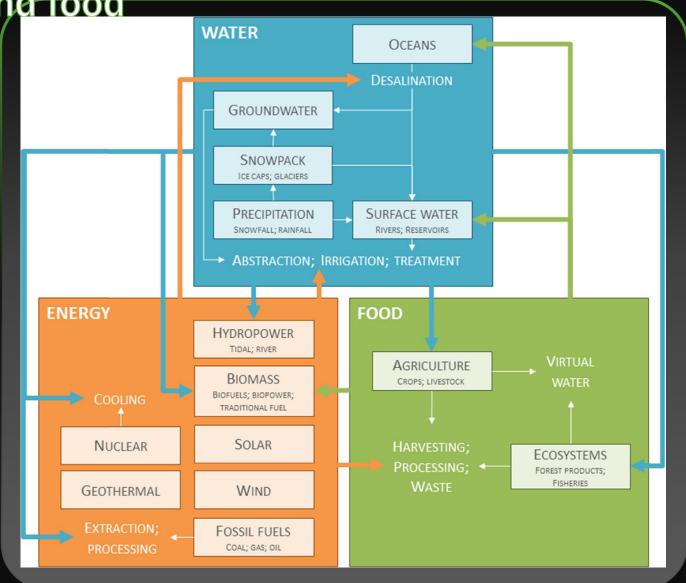


Honeck et al. 2020: doi:10.3390/su12041387


GE-21

Part 6

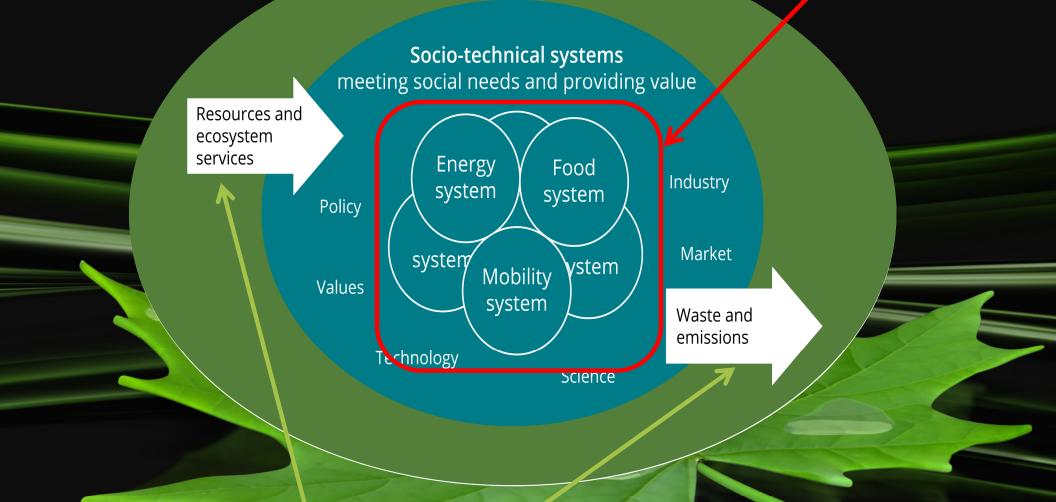
NEXUS: FROM ES TO SDG



Sustainable development and the link between water and energy and food: a perspective on livelihoods

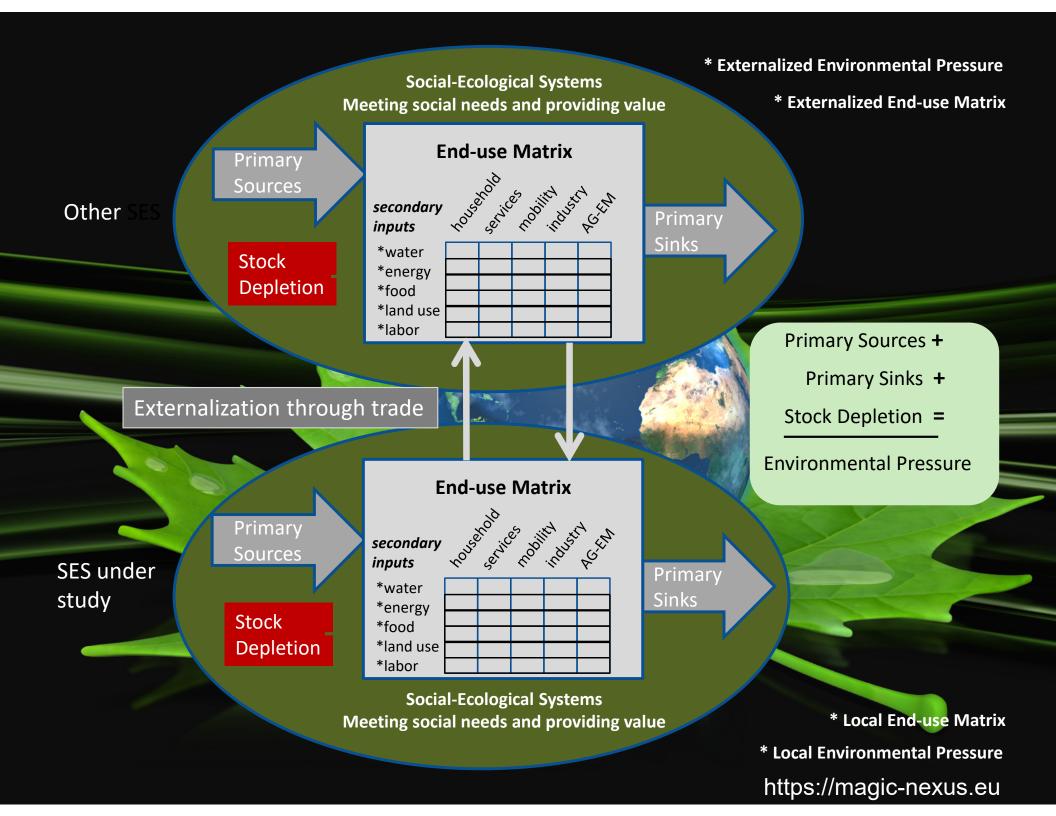
Il s'agit de parvenir à un équilibre durable entre l'approvisionnement naturel et la demande humaine afin d'assurer la sécurité des moyens de subsistance environnementaux

Sustainable development and the link between water and energy and food



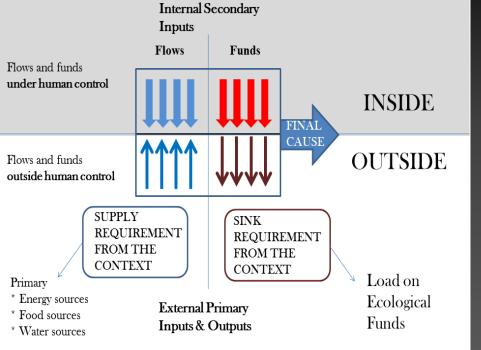
The environmental link system defines the main flows within and between water, energy and power systems.

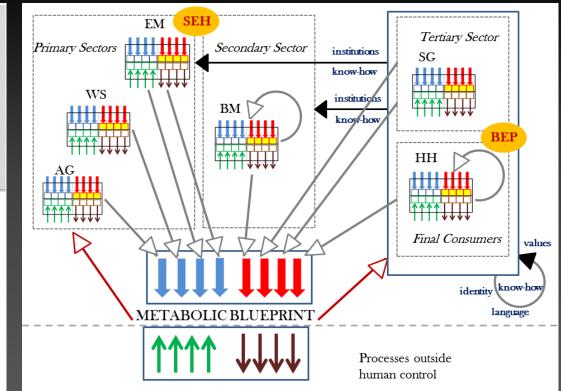
The narrative of the European Environmental Agency


Internal State

Ecosystems

Environmental Pressure

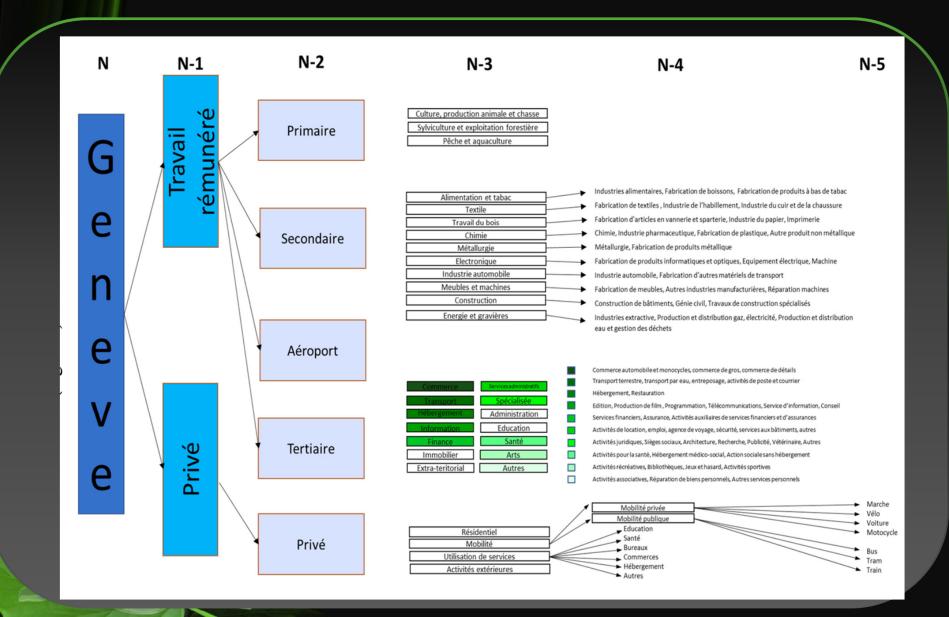

https://magic-nexus.eu



NEXUS avec **MuSIASEM**

Multi-Scale Integrated Analysis of Societal and Ecosystem Metabolism

The investment of flow and fund elements required by the given processor is no longer available for operating other processors expressing other tasks or functions in the rest of society...



https://en.wikipedia.org/wiki/MuSIASEM

MuSIASEM: Genève

Bissiau's Master 2018

MuSIASEM: Genève

Selected funds and flows variables

									·	
	Flow / Fund	fund	flow	flow	flow	flow	flow	flow	flow	flow
	Internal / External	internal / external	internal / external	external	external	external	external	internal	internal/ external	external
	intensive / extensive	extensive	extensive	extensive	extensive	extensive	extensive	extensive	extensive	extensive
	Input / output	Input	Input	Input	Input	Input	Input	Input	Output	Output
	Name of variable	Human activity	Electricity	Gaz	Oil	Mazout	Total Petrol	Water	GDP	CO2
	Unit	h	GW/h	TJ	τJ	TJ	τJ	m3	CHF	т
	Year of data	2015	2016	2016	2016	2016	2016	2016	2015	2016
	_									
N-2	Private									
		~~								
N-3	Residential									
N-3	Mobility									
N-4	Proivate mobility									
N-5	Cars									
N-5	Motos									
N-5 N-4	Active mobility									
N-4	Public mobility Bus									
N-5	Bus Tramway									
N-5	Train									
N-5	ITani									
N-3	Service use									
N-4	Education									
N-4	Health									
N-4	Office									
N-4	Commercial									
N-4	Bar / restaurant / hotel									
N-4	Others									

Hierarchical levels

Bissiau's Master 2018

End use matrix

Intensive Variables - Variables Extensives /Human Activity (HA):

- **1.** Majority of human activity (HA) in the private sector
- 2. Majority heavy consumption in the residential and tertiary sectors
- **3.** Intensive consumption dominated by economic sectors

	tensive				Extensif								
	НА	EMR				EJP		ET				GDP	
	па	Electricity	Gaz	Petrol	Water	LJF		Electricity	Gaz	Petrol	Eau	GDF	
	Mh	kWh/h	MJ/h	MJ/h	L/h	CHF/h		GWh	ΓJ	TJ	dam3	M€	
Geneva	4'680	0.5	2.7	6.4	11	9.3		2'412	12'691	30'088	49'697	43'303	
Private	4'060	0.2	2.3	2.3	8	0.0		697	9'507	9'208	32'531	0	
Residential 1	3'448	0.2	2.8	1.4	9	0.0 <		2 676	9'496	4'779	32'529	> 0	
Mobility	210	0.1	0.1	21.1	0	0.0		21	11	4'427	0	0	
service use	169	n.a	n.a	n.a	n.a	n.a		n.a	n.a	n.a	n.a	n.a	
Outdoor activities	89	n.a	n.a	n.a	n.a	n.a		n.a	n.a	n.a	n.a	n.a	
3													
Paid work	620	2.8	5.1	33.7	28	69.9		1'715	3'184	20'880	17'167	43'303	
Primary	18	0.5	11.8	4.1	110	7.1		8	207	72	1'933	125	
Secondary	85	4.6	23.8	2.4	26	87.2		389	2'019	201	2'238	7'391	
Airport	3	1.2	0.0	6'229	72	557		3	0	17'442	202	1'561	
Tertiary	514	2.6	1.9	6.2	25	66.5		2 1'314	958	3'165	12'794	34'226	

Report «Genève 2050»

Genève 2050

Version du rapport Genève 2050 en date du 27 Juin 2018 En vue de la consultation Scénario de type « Continuation » : les tendances déjà observables au présent se poursuivent

Scénario de type « Limites et discipline » : les comportements doivent s'adapter pour faire face aux contraintes environnementales ou aux limites du monde physique.

Scénario de type « Effondrement » :

des dégradations systémiques et l'échec des tentatives de régulation provoquent un recul significatif du niveau de vie, qui peut aller jusqu'à un effondrement civilisationnel.

Scénario de type « Transformation » :

la combinaison de nouvelles formes d'organisations et d'échanges commerciaux, de nouvelles technologies et d'une dynamique de transformations socioculturelles permettent à la société de se transformer, et ce faisant, d'accroître significativement sa capacité d'action.

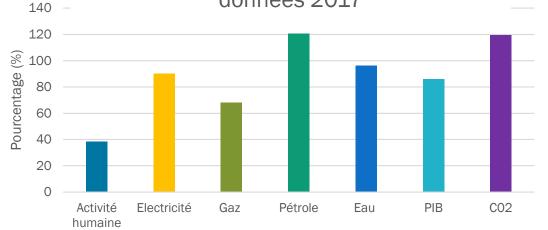
(République et canton de Genève, 2018)

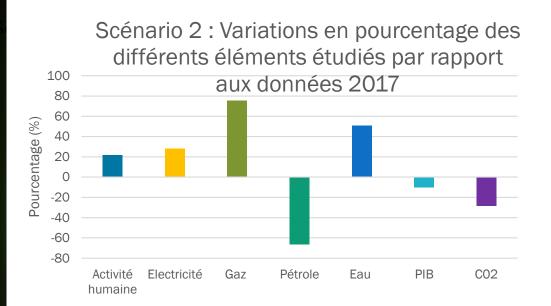
Scenarios

Genève 2050

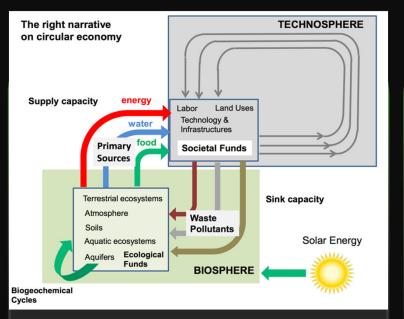
			1	ntensif			Extensif						
	HA	EMR				FIP		ET		600			
		Electricité	Gaz	Pétrole	Eau	EIP	Electricité	Gaz	Pétrole	Eau	GDP		
	Mh	kWh/h	MJ/h	MJ/h	L/h	CHF/h	GWh	TJ	TJ	dam3	M€]	
Genève	4 665	0.5	2.7	6.5	11	9.3	2 411	12 691	30 088	49 698	43 303		
Privé	4 060	0.2	2.3	2.3	8	0.0	697	9 507	9 208	32 531	0	1	
Résidentiel	3 4 4 8	0.2	2.8	1.4	9	0.0	676	9 4 96	4 779	32 529	0	1	
Mobilité	210	0.1	0.1	21.1	0	0.0	21	11	4 427	0	0	L	
Utilisation de services	169	n.a	n.a	n.a	n.a	n.a	n.a	n.a	n.a	n.a	n.a	L	
Activités extérieures	89	n.a	n.a	n.a	n.a	n.a	n.a	n.a	n.a	n.a	n.a		
Travail rémunéré	605	2.8	5.3	34.5	28	71.6	1 715	3 183	20 880	17 167	43 303	Ľ	
Primaire	2.5	3.3	82.4	28.7	769	50.0	8	207	72	1 933	125	1	
Secondaire	85	4.6	23.8	2.4	26	87.2	389	2 0 1 9	201	2 2 3 8	7 3 9 1	L	
Aéroport	3	1.2	0.0	6 229	72	557	3	0	17 442	202	1 561		
Tertiaire	514	2.6	1.9	6.2	25	66.5	1 314	958	3 165	12 794	34 226		

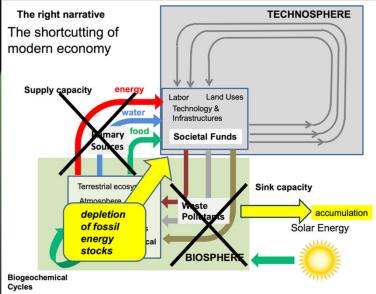
Scénario :




Scenario 1

Scénario 1 : Variations en pourcentage des différents éléments étudiés par rapport aux données 2017


Scenario 2


SCÉNARIO 2 TYPE "LIMITES ET DISCIPLINE" LA CONSOMMATION DE GENÈVE EST ESTIMÉE À : 3 081 GWh **D'ÉLECTRICITÉ** AUGMENTATION DE 27 % PAR RAPPORT À 2017 22 243 TJ DE GAZ **AUGMENTATION DE 75%** PAR RAPPORT À 2017 10 223 TJ **DE PÉTROLE** DIMINUTION DE 66% PAR RAPPORT À 2017 75 019 dam3 D'EAU **AUGMENTATION DE 50%** PAR RAPPORT À 2017

Circular economy?

Before the industrial revolution and access to fossil fuel sources the economy could still be considered circular, with a possible recycling of all waste and pollutants

The modern economy has completely crowned the natural metabolism of our societies and causes the reduction of fossil energy stocks and the accumulation of pollutants (e.g. CO2)

Is there a pilot on the plane?

The current level of control around sustainable development issues

Giampietros' slides

Is there a pilot on the plane?

Le niveau de contrôle que nous souhaiterions voir partout

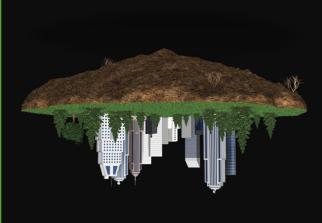
Giampietros' slides

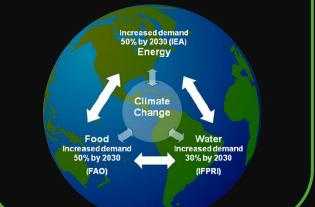
Is there a pilot on the plane?

Avec un véritable tableau de bord des ODD

Giampietros' slides

Conclusions


Ecosystem Services (ES): anthropocentric concept


We have the data and tools to evaluate ES

Whatever the approach, we exceed the planet's natural ability to regenerate the natural capital we need!

The Nexus is a political and scientific approach aimed at integrating the objectives of the different sectors The complexity of the SDGs requires an integrated Nexus-type approach

Some references

- Costanza, R. et al. Modelling and measuring sustainable wellbeing in connection with the UN Sustainable Development Goals. Ecological Economics 130, 350-355 (2016).
- Fischer, J. et al. Advancing sustainability through mainstreaming a social–ecological systems perspective. Current Opinion in Environmental Sustainability 14, 144-149 (2015).
- Biggs, E.M. et al. Sustainable development and the water-energy-food nexus: A perspective on livelihoods. Environmental Science & Policy 54, 389-397 (2015).
- Gallagher, L. et al. The critical role of risk in setting directions for water, food and energy policy and research. Current Opinion in Environmental Sustainability 23, 12-16 (2016).
- Honeck, E.C. et al. Implementing Green Infrastructure for the Spatial Planning of Peri-Urban Areas in Geneva, Switzerland: Sustainability (2020)
- Giuliani, G. et al. Knowledge generation using satellite earth observations to support sustainable development goals (SDG): A use case on Land degradation: International Journal of Applied Earth Observation and Geoinformation (2020).
- Lehmann, A. et al. Lifting the Information Barriers to Address Sustainability Challenges with Data from Physical Geography and Earth Observation. Sustainability 9 (2017).
- Lehmann, A. et al. GEOEssential mainstreaming workflows from data sources to environment policy indicators with essential variables: International Journal of Digital Earth (2019).
- Lehmann, A., et al. Towards integrated essential variables for sustainability. International Journal of Digital Earth (2020).
- Lu, Y.L., Nakicenovic, N., Visbeck, M. & Stevance, A.S. Five priorities for the UN Sustainable Development Goals. Nature 520, 432-433 (2015).
- Reyers, B., Stafford-Smith, M., Erb, K.-H., Scholes, R.J. & Selomane, O. Essential Variables help to focus Sustainable Development Goals monitoring. Current Opinion in Environmental Sustainability 26–27, 97-105 (2017).
- Saltelli, A. & Giampietro, M. What is wrong with evidence based policy, and how can it be improved? Futures (2017).
- Wood et al. Distilling the role of ecosystem services in the Sustainable Development Goals. Ecosystem services (2018).

Internet links

Vidéos:

 Nexus: https://www.coursera.org/learn/sustainability-social-ecologicalsystems/lecture/WLFla/welcome-to-our-course-on-sustainability
Ecosystem services: https://www.youtube.com/watch?v=Cr1wn4Do7gE
Story of stuffs: http://storyofstuff.org/movies/story-of-stuff/

Présentations recommandées:

Georgina Mace: https://www.youtube.com/watch?v=Cr1wn4Do7gE
Camino Liquete: https://mediaserver.unige.ch/play/100389
Alessandro Gimona: https://mediaserver.unige.ch/play/102254
https://www.ted.com/talks/johan_rockstrom_let_the_environment_guide_our_development
https://www.ted.com/talks/pavan_sukhdev_what_s_the_price_of_nature

MOOCs:

https://www.coursera.org/learn/sustainable-development
https://www.coursera.org/learn/sustainability-social-ecological-systems
https://www.coursera.org/learn/ecosystem-services/home/welcome

Livres:

http://ab.pensoft.net/article/12837

Université de Genève:

- // https://www.unige.ch/environnement
 - https://www.unige.ch/envirospace

Thank you for your attention

