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1 Context and main objectives

Context: This long term project involves several laboratories around the
theory and the applications of the empirical likelihood and its generalisation,
MODAL�X, University Paris-Nanterre , the university of Reims and the univer-
sity of Oujda. Some participants have already worked on the subject together
and would like to develop some tools in the �eld of big data, text mining and
econometric analysis. Our group is also opened to collaborations with other
members of the Labex on this subject.We would like to organize some work-
ing seminars and two workshops around these problems during the two coming
years.

Main objectives
The increasing capacity to collect data has improved much faster than our

ability to process and analyze big datasets. The availability of massive informa-
tion in the big data era (on which statistical tools or machine-learning proce-
dures could theoretically now rely on) strongly suggests to use subsampling tech-
niques (Politis and Romano, 2001) as a remedy to the apparent intractability of
learning from datasets of explosive size, in order to break the current computa-
tional barriers. Such an approach has been for instance developed in Kleiner et
al. (2014). It is also at the core of some recent developments on survey sampling
method in the framework of big data (see Bertail et al. (2014)(2015a)(2015b),
Zetlaoui et al. (2017)). However one of the main di¢ culties with big data sets
is the problem of heterogeneity of data. Heterogeneity of sources or of the data
can make di¢ cult or even dubious the use of subsamples if they are not con-
trolled by some macro-variables. Indeed for many studies the data at hand is
somehow not representative of the population of interest. For instance, data
collected on internet do not respect the structure of the whole population. On
the other hand we often have concurrent datasets of moderate or smaller sizes
or exhaustive information which should allow to correct the big data structure.

1



The purpose of this project is to explore these possibilities with the help of em-
pirical likelihood, a �exible tools to incorporate extra-information. The project
is thus at the cross-road between statistics, survey sampling techniques and
optimization problems.

Empirical likelihood is now a useful and classical method for constructing
con�dence regions for the value of some parameters in non-parametric or semi-
parametric models, which allows to incorporate additional (margin) information.
It has been introduced and studied by Owen (1988)(1990), see Owen(2001) for a
complete overview and exhaustive references (until 2001). The now well-known
idea of empirical likelihood consists in maximizing a pro�le likelihood supported
by the data, under some model constraints and margin constraints. It can be
seen as an extension of �model based likelihood�used in survey sampling when
some marginal constraints are available (see Hartley and Rao(1968), Thomas,
D. R. and Grunkemeier(1975)). Owen and many followers have shown that
one can get a useful and automatic non-parametric version of Wilks�theorem
(stating the convergence of the log-likelihood ratio to a �2 distribution), which
enjoy the same Bartlett correctability as parametric likelihood (DiCiccio et al.,
1991).

The purpose of this project is to develop these methods in four directions :
- study the validity of the method for in�nite dimensional parameter or

Banach valued parameters, when a lot of marginal constraints are taken into
account in the optimization program. In particular we will establish dual rep-
resentation of the optimization program related to empirical likelihood and its
generalization (see part 3). This is particularly important for the applications
to text simpli�cation that we are dealing with.
- propose penalization methods when large parameter values (with dimension

p bigger than n the sample size) are involved (see part 4). The choice of the
divergence and of the penalization should be studied in details.
- obtain exact exponential bounds for penalized empirical likelihood (see

part 4). This tools will allow to build �nite sample con�dence region eventually
for large parameters.
- propose feasible gradient methods for big data eventually based on sub-

sampling techniques (see part 4) . Since all the statistical aspects of the method
actually rely on an internal optimization procedure, it is of prime importance
to propose adequate interior point methods based on adequate divergence and
subsampling techniques for the method to be practically implemented. This
aspect will be particular sensible for big data.

The proposed methods will be applied to real data on two subjects
- text simpli�cation via information theoretical tools (including empirical

likelihood) to facilitate the access to web pages for the deaf people population
- the impact of nutritional logos on nutritional and consumption data.
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2 Empirical likelihood for general parameters :
a short review

Let B be some separable Banach space. Consider the framework of estimat-
ing a general functional T (P ) (see Von Mises,1936) on some probability mea-
sure convex space P on B, large enough to contain the Dirac measures. Let
X1; ::::; Xn; ::: be i.i.d. random variables, taking their value in B with common
probability measure P in P. The empirical probability measure is de�ned by

Pn = n
�1

nX
i=1

�Xi

where the �Xi
are Dirac measures at X 0

is: The empirical likelihood ratio evalu-
ated at � = T (P ) is de�ned by

RE;n(�) = sup
Qn2Pn

�
�ni=1

dQn
dPn

(Xi); T (Qn) = �

�
;

where Pn is the set of discrete probability measures dominated by Pn that is

Pn = f ePn = nX
i=1

pi;n�Xi , pi;n � 0;
nX
i=1

pi;n = 1g:

This can be seen as a convex optimization under some possibly non convex
constraints.
T (P )may be the unique solution of some estimating equations EP f(X;T (P )) =

0 (see Qin and Lawless, 1994). These equations will also include marginal con-
straints in this project : see an application on large datasets of this kind of idea
in Crepet et al. (2009). In this case, the constraint becomes EQn

f(X; �) = 0 =P
pi;nf(Xi; �) and the empirical likelihood boils down to the convex maximiza-

tion program.

RE;n(�) = sup
pi;n;i=1;:::;n

(
�ni=1pi;n
1=nn under

Pn
i=1 pi;nf(Xi; �) = 0Pn

i=1 pi;n = 1; pi;n � 0

)
:

Generalizations of empirical likelihood methods are available for many sta-
tistical and econometric models as soon as the parameter of interest is de�ned
by some moment constraints (see Qin and Lawless, 1994). It can now be con-
sidered as an alternative to the generalized method of moments (GMM, see
Hansen, 1982). Moreover just like in the parametric case, this log-likelihood
ratio is Bartlett-correctable. This means that an explicit correction leads to
con�dence regions with third order properties. The asymptotic error on the
level is then of order O(n�2) instead of O(n�1) under some regularity assump-
tions (see DiCiccio et al,1991).
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A possible interpretation of the empirical log-likelihood ratio is to interpre-
tate it as the minimization of the Kullback divergence, say K, between the
empirical distribution of the data Pn and a measure (or a probability measure)
Q dominated by Pn, under linear or non-linear constraints imposed on Q by
the model. The use of other pseudo-metrics instead of the Kullback divergence
K has been suggested by Owen(1990) and many other authors. For example, the
choice of relative entropy has led to �Entropy econometrics�in the econometric
�eld (see Golan et al. ,1996). Related results may be found in the probabilistic
literature about divergence or the method of entropy in mean (see Leonard,
2001a,b,c, Gamboa and Gassiat, 1996). Some generalizations of the empirical
likelihood method have also been obtained by using Cressie-Read discrepancies.
This has led to some econometric extensions known as �generalized empirical
likelihood�(see Newey and Smith, 2004), even if the �likelihood�properties and
in particular the Bartlett-correctability in these cases are lost (see DiCiccio et
al., 1991). Bertail et al. (2014) have shown that Owen�s original method in the
case of the mean can be extended to any regular convex statistical divergence or
'�-discrepancy (where '� is a regular convex function) under weak assumptions,
for general Hadamard di¤erentiable functionals. We call this method �empiri-
cal energy minimizers�by analogy to the theoretical probabilistic literature on
the subject (see Leonard, 2001a,b,c and the references therein). A goal of the
project will be to further explore these generalization.

3 A general view of empirical likelihood : gen-
eralization to process value parameters or Ba-
nach value parameters

We consider a measured space (X ;A;M) whereM is a space of signed measures.
It will be essential for applications to work with signed measures. Let f be a
measurable function de�ned from X to Rr; r � 1. For any measure � 2 M,
we write �f =

R
fd� and if � is a density of probability, �f = E�(f(X)). In

the following, we consider ', a convex function whose support d('), de�ned as
fx 2 R; '(x) < 1g, is assumed to be non-void (' is said to be proper). We
denote respectively inf d(') and sup d('), the extremes of this support. For
every convex function ', its convex dual or Fenchel-Legendre transform is given
by

'�(y) = sup
x2R

fxy � '(x)g; 8 y 2 R:

Recall that '� is then a semi-continuous inferior (s.c.i.) convex function. We
de�ne by '(i) the derivative of order i of ' when it exists. From now on, we
will assume the following assumptions for the function '.

H1 ' is strictly convex and d(') contains a neighborhood of 0 ;

H2 ' is twice di¤erentiable on a neighborhood of 0 ;
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H3 (renormalization) '(0) = 0 and '(1)(0) = 0, '(2)(0) > 0, which implies
that ' has an unique minimum at zero ;

H4 ' is di¤erentiable on d('), that is to say di¤erentiable on intfd(')g, with
right and left limits on the respective endpoints of the support of d('),
where intf:g is the topological interior.

H5 ' is twice di¤erentiable on d(') \ R+ and, on this domain, the second
order derivative of ' is bounded from below by m > 0:

Let ' satis�es the hypotheses H1, H2, H3. Then, the Fenchel dual trans-
form '� of ' also satis�es these hypotheses. The '�-discrepancy I'� between
Q and P, where Q is a signed measure and P a positive measure, is de�ned as
follows:

I'�(Q;P) =
� R

X '
� �dQ

dP � 1
�
dP if Q� P

+1 else.
(1)

For details on '�-discrepancies or divergences and some historical comments,
see Liese and Vajda(1987), Leonard (2001). It is easy to check that Cressie-Read
discrepancies ful�ll these assumptions. Indeed, a Cressie-Read discrepancy can
be seen as a '�-discrepancy, with '� given by:

'��(x) =
(1 + x)� � �x� 1

�(�� 1) ; '�(x) =
[(�� 1)x+ 1]

�
��1 � �x� 1
�

for some � 2 R. This family contains all the usual discrepancies, such as relative
entropy (�! 1), Hellinger distance (� = 1=2), the �2 (� = 2) and the Kullback
distance (�! 0).
For us, the main interest of '�-discrepancies lies on the following duality rep-

resentation, which follows from results of Borwein and Lewis (1991) on convex
functional integrals (see also Rockafellar, 1968).

Theorem 1 Let P 2M be a probability measure with a �nite support and f
be a measurable function on (X ;A;M). Let ' be a convex function satisfying
assumptions H1-H3. If the following quali�cation constraint holds,

Qual(P) :

(
9T 2M;Tf = b0 and
inf d('�) < infX

dT
dP � supX

dT
dP < sup d('�) P� a:s:;

then, we have the dual equality:

inf
Q2M

fI'�(Q;P)j (Q� P)f = b0g = sup
�2Rr

�
�0b0 �

Z
X
'(�0f)dP

�
: (2)

If ' satis�es H4, then the supremum on the right hand side of (2) is achieved
at a point �� and the in�mum on the left hand side at Q� is given by

Q� = (1 + '(1)(��0f))P:
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The same kind of results also holds when the number of constraints goes to
in�nity or even is in�nite (see Leonard, 2001abc).
One purpose of this project will be to explore these kinds of duality theorem

when the data has a very big dimension in comparison to the data size. In
particular we will determine under which conditions on the constraints it is
still possible to obtain such a dual representation (with no dual gap) when the
number of constraints is in�nite or belongs to some Banach space. A particular
case of interest, is when the parameter of interest or the constraints belong to
a set of function with a �nite Vapnik dimension. We will consider in particular
the case when P has discrete support which is the case of interest for general
empirical discrepancy minimization as seen below.

3.1 Empirical optimization of '�-discrepancies when p is
large

LetX1; :::Xn be i.i.d. r.v.�s de�ned on X =Rp with common probability measure
P 2M. Consider the empirical probability measure Pn = 1

n

Pn
i=1 �Xi

; where �Xi

is the Dirac measure at Xi. We will here consider that the parameter of interest
� 2 Rq is the solution of some M-estimation problem EPf(X; �) = 0, where f
is now on a regular di¤erentiable function from X�Rq ! Rr. For simplicity,
we now assume that f takes its value in Rq, that is r = q and that there is no
over-identi�cation problem. The over-identi�ed case can be treated similarly by
�rst reducing the problem to the strictly identi�ed case (see Qin and Lawless,
1994).
For a given ', we de�ne, by analogy to the empirical likelihood problem, the

quantity
�n(�) = n inf

fQ�Pn; EQf(X;�)=0g
fI'�(Q;Pn)g

We de�ne the corresponding random con�dence region

Cn(1� �) = f� 2 Rq j9Q� Pn with EQf(X; �) = 0 and nI'�(Q;Pn) � �(�)g ;

where �(�) is a quantity such that

Pr(� 2 Cn(1� �)) = 1� �+ o(1):

De�neMn = fQ 2M with Q� Png = fQ =
Pn

i=1 qi �Xi
; (qi)1�i�n 2 Rng.

Considering this set of measures, instead of a set of probabilities, can be partially
explained by Theorem 1.
The underlying idea of empirical likelihood and its extensions is actually a

plug-in rule. Consider the functional de�ned by

M(P; �) = inf
fQ2M; Q�P; EQf(X;�)=0g

I'�(Q;P)

that is, the minimization of a contrast under the constraints imposed by the
model. This can be seen as a projection of P on the model of interest for the
given pseudo-metric I'� . If the model is true at P, that is, if EPf(X; �) = 0,
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then clearly M(P; �) = 0. A natural estimator of M(P; �) for �xed � is given by
the plug-in estimator M(Pn; �), which is �n(�)=n. This estimator can then be
used to test M(P; �) = 0 or, in a dual approach, to build con�dence region for
� by inverting the test.
ForQ inMn, the constraints can be rewritten as (Q�Pn)f(:; �) = �Pnf(:; �):

Using Theorem 1, we get the dual representation

�n(�) := n inf
Q2Mn

fI'�(Q;Pn); (Q� Pn)f(:; �) = �Pnf(:; �)g

= n sup
�2Rq

Pn
�
� �0f(:; �)� '(�0f(:; �))

�
: (3)

Notice that �x � '(x) is a strictly concave function and that the function
�! �0f is also concave. The parameter � can be simply interpreted as the Kuhn
& Tucker coe¢ cient associated to the original optimization problem. From this
representation of �n(�); we can now derive the usual properties of the empirical
likelihood and its generalization. In the following, we will also use the notations

fn =
1

n

nX
i=1

f(Xi; �); S
2
n =

1

n

nX
i=1

f(Xi; �)f(Xi; �)
0 and S�2n = (S2n)

�1:

then, under an empirical quali�cation constraint, Cn(1��) is a convex asymp-
totic con�dence region with

lim
n!1

Pr(� =2 Cn(1� �)) = lim
n!1

Pr(�n(�) � �)

= lim
n!1

Pr
�
nf

0
nS

�2
n fn � �2q(1� �)

�
= 1� �:

Empirical likelihood and the Kullback discrepancy In the particular
case '0(x) = �x� log(1� x) and '�0(x) = x� log(1 + x) corresponding to the
Kullback divergence for measures

K(Q;P) = �
Z
log(

dQ
dP
)dP+

Z
(dQ� dP);

the dual program obtained in (3) becomes, for the admissible �;

�n(�) = sup
�2Rq

 
nX
i=1

log(1 + �0f(Xi; �))

!
:

As a parametric likelihood indexed by �; it is easy to show that 2�n(�) is
asymptotically �2(q) when n ! 1; if the variance of f(X; �) is de�nite. It is
also Bartlett-correctable since it is a likelihood in � in its dual form (see Bertail,
2006). For a general discrepancy, the dual form is not a likelihood and may not
be Bartlett-correctable, see DiCiccio et al. (1991).
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Moreover, we necessarily have the q0is > 0 and the optimisation program
implies in this case that

Pn
i=1 qi = 1; that is the solution is a probability, so

that the quali�cation constraint essentially means that 0 belongs to the convex
hull of the f(Xi; �). This is in particular the reason which one may obtain very
bad coverage probability for empirical likelihood

GMM and �2 discrepancy The particular case of the �2 discrepancy cor-
responds to '2(x) = '�2(x) =

x2

2 . �n(�) can be explicitly calculated. Indeed, we
get easily that � = S�2n fn so that, by Theorem 1, the minimum is attained at
Q� =

Pn
i=1 qi�Xi

with

qi =
1

n
(1 + f

0
nS

�2
n f(Xi; �))

and

I'�2 (Q
�;Pn) =

nX
i=1

(nqi;n � 1)2
2n

=
1

2
f
0
nS

�2
n fn;

which is exactly the square of a self-normalized sum which typically appears in
the Generalized Method of Moments (GMM).
Notice that, in opposition to the Kullback discrepancy, we may charge posi-

tively some region outside of the convex hull of the points, yielding bigger (that
is too conservative) con�dence region. Notice that in this case it is possible to
get exact exponential bounds for this quantity as shown in Bertail et al. (2008).
As a consequence even if p << n but is of the same orderand grows with n;it is
still possible to get an automatic con�dence region, by just relying on the inter-
nal optimization problem, whithout having to invert the empirical covariance
matrix (which may be complicated) for big datasets with a lot of variables. One
purpose of this project we focus on what happens when the dimension in p is
very large.

4 Generalized Empirical likelihood for big data

big data may be big according to di¤erent features. They can be tall because the
number of individuals are important or they can be large because the dimension
of the variables p is very big (p >> n) (see Bühlmann, van de Geer, S., 2011).
Most of the time the tools to treat these two problems are totally di¤erent . In
one case, one tries to reduce the size of the individuals either by subsampling
or using some parallelized procedures : in these aspects the computational and
optimization problems are of prime importance.. On the other case one generally
makes some "sparsity assumptions" and try to select only a few components
which are of importance. Most of the time, such tasks is performed by using
some penalization procedure for instance the LASSO procedure (see the recent
book by Hastie, T. , Tibshirani, T., Wainwright, 2016 and their references.).
The very �exible form of empirical likelihood and its generalization (in par-

ticular with the �2 discrepancy) makes it an ideal tool to treat the problem in an
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uni�ed way, without any parametric assumptions. It is indeed an ideal tools for
incoporating extra-information when one wants to deal with large datasets on
both dimensions, even if the data may not be representative of the population.
The idea is simply to write the constraints induced by the model and to add
the additional macro-constraints brought by the marginal information and to
penalize the constraints to select the most important ones. Of course the opti-
mization procedure may be very time consuming on very big datasets. For this
reasons we propose to explore the feasibility and the validity of minibatch or
subsampling techniques in the optimization problem as emphasized by Bertail
et al (2016), Zetlaoui et al. (2017).

4.1 Penalizing the dual likelihood in large dimension

Several propositions have emerged to treat big data (large dimension) with
empirical likelihood. We may classi�ed them into too classes which will be
studied precisely in this project.
i) Enlarge-the-margin methods : by this, we mean that instead of the

original empirical likelihood problem, allow for some �exibility or some pertu-
bations of the original constraints. This can be done either by adding one or
several points to the data which do not have exactly the correct mean (see Chen,
Variyath and Abraham (2008), Emerson and Owen (2009)). Or this can be done
by replacing the original constraints by some inequality constraints with respect
to some norm jj:jjR where R is possibly random allowing for some �exibility in
the constraints. This leads to relaxed empirical likelihood version

RpenE;n(�) = sup
pi;n;i=1;:::;n

�
nn�ni=1pi;n under jj

Pn
i=1 pi;nf(Xi; �)jjR � �nPn

i=1 pi;n = 1; pi;n � 0

�
(4)

where �n is a margin to be calibrated (possibly depending on the data).
ii) Penalize empirical likelihood either on the primal form or the

dual form. It is well known in the convex literature that program 4 may also
be rewritten

log(RpenE;n(�)) = sup
pi;n;i=1;:::;n

� Pn
i=1 log(pi;n)� Cn(�n)jj

Pn
i=1 pi;nf(Xi; �)jjRPn

i=1 pi;n = 1; pi;n � 0

�
which may be interpreted as a penalized version of the original program. Such
penalizations have been studied in Bartollucci(2007) and Lahiri and Mukhopad-
hyay(2011) when f(Xi; �) = Xi � �; Xi = (X1

i ; :::X
q
i ) 2 Rq: The proposition

of Bartolluci (2007) corresponds to the choice R = bS�2n and jjxjjR = x0 bS�2n x;

C(�n) = n=2h
2; where bS2n is the sample covariance matrix

bS2n = 1

n

nX
i=1

(Xi �Xn)(Xi �Xn)
0:

The proposition of Lahiri and Mukhopadhyay (2011) in a more general depen-
dent framework corresponds to R = diag(��2jn )i=1;:::;q; jjxjjR = x

0Rx; C(�n) = �
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where the

�2jn =
1

n

nX
i=1

(Xj
i �X

j

n)
2

are the marginal empirical variances. One purpose of this project is to further
explore the e¤ect of the choice of the penalization by allowing jj.jjR to be some
general norm.
Another proposition is to penalize the empirical likelihood in its dual form

(see Mikland for an introduction to dual likelihood). Consider the penalized
program

Pn(�; �) = Pn
�
� �0f(:; �)� '(�0f(:; �))

�
� 1
2
jj�jj2R:

which is clearly linked to the original penalized problem by duality consideration

sup
�2Rq

(Pn(�; �)) = Infpi(I'�(Q;Pn) +
1

2
jjQf(:; �)jj2R�1):

We will further investigate the relations between these di¤erent dual formula-
tions in our project in particular when one use the L1 or the L1 or a combination
of these norms with L2 (elastic net).

iii) Choose another divergence (on space of signed measure). Another
proposition is to use a di¤erent criterion than the likelihood criterion, aris-
ing from the choice of measuring the distance beetween Qn and Pn with the

Kullback-Leibner divergence say KL(Q;P ) = �
R
log
�
dQ
dP

�
: It is known for in-

stance that the choice of �2(Q;P ) =
R
(dQdP � 1)

2 leads to exact computation of
the generalized empirical likelihood version provided that one works with signed
measures Qndominated by Pn rather than probability measure (that is, one does
not impose pi;n � 0 and

Pn
i=1 pi;n = 1). In this case, the maximization problem

becomes

R�2;n(�) = sup
pi;n;i=1;:::;n

(X
(
pi;n
1=n

� 1)2 under
nX
i=1

pi;n(Xi � �) = 0
)
;

=
1

2
(Xn � �)

0
S2�n (Xn � �)

where S2n =
1
n

P
(Xi � �)(Xi � �)0 and S2�n is its Moore-Penrose generalized

inverse. For general constraints, the solution is close to the so called GMM
program.

Note that in the �2 case the dual problem when R = C�1:I for some
constant C, and with the choice of à L2 penalization then the optimization
program becomes

D = sup
b�2L�F

Pn
n
��

0
f � (�0f)2=2� C�0�

o
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and the solution of this program is simply the regularized Hotteling statistics

1

2
Pnf

0
(Pnff

0
+ CI)�1Pnf

which is a regularized form of the T 2 Hottelling statistics (with no centering).

When the dimension p << n; Bertail et al. (2008) have shown that one can
choose C=0 and can get some exact exponential bounds for this quantity. We
would like to investigate conditions to obtain exponential bounds in this large
dimension framework by choosing C = Cn ! 0: The GMM case when there
is an in�nite number (or a continuum) of constraints has been treated by sev-
eral authors in the econometric literature, see for instance Carasco and Florens
(2000), using some Tikhonov regularization of the operator S2n (which somehow
is the version (ii) ). We want to show that this a special case of L2 penalization
of generalized empirical likelihood.

4.2 An optimization challenge

From an optimization point of view, according to the choice of the divergence
and penalization, there exists very e¢ cient interior point methods to solve the
empirical likelihood optimization problem. However, since access to the data,
may be time consuming we will explore the validity of subsampling techniques
as used in Politis and Romano (1992). The idea underlying subsampling which
is currently used for big data is to use the universal validity of the subsam-
pling method as proved in Politis and Romano (1992), to extrapolate inferential
methods to bigger size (see Bickel et al, 2008). Such ideas are not new and
have also been put forward in some earlier works by Bickel and Yahav (1988)
about bootstrap and Richardson extrapolation, when the computer capacities
were not su¢ cient to treat even moderate sample size. Such methods are them-
selves related to well known numerical methods. In any case these optimization
problems are very CPU expensive and time consumming : we will use GPU
solutions and explore other alternatives.

5 Some applications

5.1 An application to text simplication

People with hearing loss have a vocabulary in sign language that does not evolve
as quickly as French language. Hearing impairment impoverishes vocabulary,
leading to mild illiteracy. In many cases, the syntax of websites (especially ad-
ministrative sites that are essential to citizens) is inappropriate for people with
hearing loss and inappropriate voice assistance services. The aim of this appli-
cation is to contribute to the democratization of access to the web service for
people with severe hearing loss and to allow the development of web accessibil-
ity through linguistic and semantic analysis using techniques from information
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theory and statistical learning. A �rst step is to try to evaluate the complexity
of web-sites. The most commonly adopted measure is based on the cross en-
tropy between a language model seen as a tree connecting words and the actual
unknown distribution of observed data, assuming that the data can be modelled
by a stationary and ergodic phenomenon (typically a Markov chain or a hidden
Markov chain of �xed length (n-gram). Such approach can be rephrased in term
of empirical likelihood problems which are more robust to the distributional hy-
potheses as the sample size increases. The second step is to propose a technique
for automatically reducing the content of web pages to make them accessible to
the hearing impaired. Such task is also performed either by using information
theoretical tools under a large number of constraints ( on the features of texts)
or neural networks tools. We would like to investigate the use of penalized
empirical likelihood methods in this framework.

5.2 An application to nutritional logos

Although there is a growing body of evidence about consumer understanding, at-
tention, and purchasing intention to front-of-pack (FOP) nutrition labels, com-
parative studies of their e¤ectiveness on actual food purchases are scarce. Our
objective is to provide empirical evidence on which FOP format is the more
e¤ective in improving the nutritional quality of food purchases in real-life shop-
ping conditions. This study aims at taking into account all the informations
and eventually the selection biais problems that could have appeared in the
Ministry of Agriculture survey (this survey was controlled by the Fond Francais
pour l�Alimentation et la Santé, done in 2016 under the statistical supervision of
P. Bertail and P. Dubois). The conclusions of the study by Dubois et al (2017)
shows that the Nutriscore is the preferred logo both from a perception and ef-
�ciency point of view when modeling the impact of logos on the FSA (Food
Standard agency score), using �rst and double di¤erence models taking into
account prices and some socio-economic factors. However such models are very
sensitive to biais selection problems and we would like to investigate the possible
impact of such biases on the �nal results. A solution is to incoporate all the
external information (eventually modelling bias) into the empirical likelihood as
proposed for instance in Bertail (1997). Since we expect a lot of constraints to
appear in the maximum empirical likelihood estimation problems, penalization
will be required and we want to evaluate on this speci�c example the feasibility
of our methods.
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