Publications et brevets
Plus de 155 publications et brevets dont 83 publications dans des revues internationales à comité de lecture.
Plus de 280 communications orales ou par affiches dans des congrès nationaux et internationaux dont une quinzaine de conférences orales invitées.
2024
[158] Mapping gas–phase CO2 in the headspace of two champagne glasses through infrared laser absorption spectroscopy: ŒnoXpert glass versus INAO glass, V. Alfonso, F. Lecasse, R. Vallon, C. Cilindre, B. Parvitte, V. Zeninari, G. Liger-Belair, Oeno One, 58-2, 12 pages (2024), https://doi.org/10.20870/oeno-one.2024.58.2.7886
2023
[157] Intrapulse Measurement Using a Quantum Cascade Laser Coupled with a Compact Dense Pattern Multipass Absorption Cell for Carbon Dioxide Monitoring, C. Jacquemin, F. Defossez, R. Vallon, B. Parvitte, G. Maisons, M. Carras, V. Zeninari, Journal of the Optical Society of America B: Optical Physics, 40, Issue 1, pp. A21-A27 (2023), https://doi.org/10.1364/JOSAB.469404
[156] Gas-detecting device with very high sensitivity based on a Helmholtz resonator, C. Risser, V. Zéninari, B. Parvitte, Brevet Européen n° EP2016080622, Publication n° EP 3 350 571 (B1), le 06.12.2023, https://patents.google.com/patent/EP3350571B1/en
[155] Development of a Breathalyzer for Ethanol Detection using Quantum Cascade Laser Array and a Dense Pattern Multipass Cell, C. Jacquemin, R. Vallon, B. Parvitte, G. Maisons, M. Carras, V. Zéninari, Conference Papers – Conference on Lasers and Electro-Optics – CLEO/EUROPE and European Quantum Electronics Conference – EQEC 2023, 10232325, 1 page (2023), https://doi.org/10.1109/CLEO/EUROPE-EQEC57999.2023.10232325
2022
[154] Mode-hop compensation for intracavity sensing via chip voltage in an external cavity QCL, L. Bizer, R. Vallon, B. Parvitte, G. Maisons, M. Carras, V. Zéninari, Applied Physics B, 128 (9), 166, 8 pages (2022), https://doi.org/10.1007/s00340-022-07882-z
[153] An infrared laser sensor for monitoring gas-phase CO2 in the headspace of Champagne glasses under wine swirling conditions, F. Lecasse, R. Vallon, F. Polak, C. Cilindre, B. Parvitte, G. Liger-Belair, V. Zeninari, Sensors, 22 (15), 5764. 12 pages (2022), https://doi.org/10.3390/s22155764
[152] Real-time and on-field CO2 sensing based on a fast frequency modulation OPO system, F. Defossez, Y. Hernandez, J-B Lecourt, A. Gognau, S. Boivinet, R. Vallon, B. Parvitte, V. Zeninari, S. Brohez, D. Dewaele, F. Cazier, A. Peremans, L. Lamard, A. Baylon, , SPIE Proceedings 12139 – Optical Sensing and Detection VII, 121390V, 9 pages (2022), https://doi.org/10.1117/12.2621659
[151] Intrapulse Measurement Using Quantum Cascade Laser Coupled with Compact Dense Pattern Multipass Absorption Cell for Carbon Dioxide Monitoring, C. Jacquemin, R. Vallon, F. Defossez, B. Parvitte, G. Maisons, M. Carras, V. Zeninari, Optics InfoBase Conference Papers – Part MF2C.2 -MICS, 2 pages (2022), https://doi.org/10.1364/MICS.2022.MF2C.2
[150] On-field NH3 remote sensing based on a fast wavelength modulated OPO system, F. Defossez, Y. Hernandez, J-B Lecourt, A. Gognau, S. Boivinet, R. Vallon, B. Parvitte, V. Zeninari, S. Brohez, D. Dewaele, F. Cazier, A. Peremans, L. Lamard, A. Baylon, Optics InfoBase Conference Papers – Part MF3C.5 -MICS, 2 pages (2022), https://doi.org/10.1364/MICS.2022.MF3C.5
2021
[149] How does gas-phase CO2 evolve in the headspace of champagne glasses?, A.-L. Moriaux, R. Vallon, F. Lecasse, N. Chauvin, B. Parvitte, V. Zeninari, G. Liger-Belair, C. Cilindre, Journal of Agricultural and Food Chemistry, 69, 7, 2262-2270 (2021), https://doi.org/10.1021/acs.jafc.0c02958
2020
[148] Widely-Tunable Quantum Cascade-based Sources for the Development of Optical Gas Sensors, V. Zeninari, R. Vallon, L. Bizet, C. Jacquemin, G. Aoust, G. Maisons, M. Carras, B. Parvitte, Sensors 20, pp. 6650 15 pages (2020), https://doi.org/10.3390/s20226650
[147] A first step towards the mapping of gas-phase CO2 in the headspace of champagne glasses, A.-L. Moriaux, R. Vallon, C. Cilindre, F. Polak, G. Liger-Belair, B. Parvitte, V. Zeninari, Infrared Physics and Technology 109, 103437, 9 pages (2020), https://doi.org/10.1016/j.infrared.2020.103437
[146] Quantitative Finite Element Modelling of Compact Photoacoustic Gas Sensors, B. Parvitte, R. Vallon, C. Mohamed Ibrahim, C. Jacquemin, V. Zeninari, Journal of Materials Sciences and Applications 3, pp. 1-8 (2020), https://doi.org/10.17303/jmsa.2020.4.101
[145] Gas-detecting device with very high sensitivity based on a Helmholtz resonator, C. Risser, V. Zéninari, B. Parvitte, Brevet US n° US15/769,516, Publication n° US 10 876 958 (B2), (2020) https://patents.google.com/patent/US10876958B2/en
[144] An infrared laser spectrometer for the mapping of gaseous CO2 in the headspace of champagne glasses, R. Vallon, A.-L. Moriaux, F. Lecasse, B. Parvitte,C. Cilindre, G. Liger-Belair, V. Zeninari, OSA Technical Digest (Optical Society of America), paper LM3A.4, 2 pages (2020), https://doi.org/10.1364/LACSEA.2020.LM3A.4
[143] Simulation of the non-linearity of photoacoustic signals for the detection of molecules of atmospheric interest, V. Zeninari, C. Mohamed Ibrahim, R. Vallon,B. Parvitte, OSA Technical Digest (Optical Society of America), paper JTu2A.9, 2 pages (2020), https://doi.org/10.1364/3D.2020.JTu2A.9
2019
[142] Design and implementation of a heliostat for atmospheric spectroscopy, M.-H. Mammez, R. Vallon, F. Polak, B. Parvitte, V. Zéninari, Infrared Physics and Technology 97, pp. 235-243 (2019), https://doi.org/10.1016/j.infrared.2019.01.006
[141] Tunable Mid-IR Hybrid Fiber/Crystal Laser for Gas Sensing, C.-E. Ouinten, F. Defossez, L. Lamard, A. Gognau, R. Vallon, B. Parvitte, V. Zeninari, J.-B. Lecourt, Y. Hernandez, A. Peremans, OSA Technical Digest (Optical Society of America), paper LW4B.3, 2 pages (2019), https://doi.org/10.1364/LSC.2019.LW4B.3
[140] Upgrading a Laser-Based Spectrometer for the Mapping of Gas-phase CO2 in the Headspace of Champagne Glasses, B. Parvitte, A. L. Moriaux, R. Vallon, C. Cilindre, G. Liger-Belair, V. Zeninari, Conference Papers – Conference on Lasers and Electro-Optics – CLEO/EUROPE and European Quantum Electronics Conference – EQEC 2019, 8872914, 1 page (2019), https://doi.org/10.1109/CLEOE-EQEC.2019.8872914
[139] Extended-Cavity-Quantum-Cascade-Laser-Voltage Intracavity Sensing and Application to Atmospheric Gas Detection, R. Vallon, L. Bizet, B. Parvitte, G. Maisons, M. Carras, V. Zeninari, Conference Papers – Conference on Lasers and Electro-Optics – CLEO/EUROPE and European Quantum Electronics Conference – EQEC 2019, 8871446, 1 page (2019), https://doi.org/10.1109/CLEOE-EQEC.2019.8871446
[138] Picosecond Widely-Tunable mid-IR Source for Gas Detection, F. Defossez, R. Vallon, B. Parvitte, C.-E. Ouinten A. Gognau, J.-B. Lecourt, Y. Hernandez, V. Zeninari, Conference Papers – Conference on Lasers and Electro-Optics – CLEO/EUROPE and European Quantum Electronics Conference – EQEC 2019, 8872325, 1 page (2019), https://doi.org/10.1109/CLEOE-EQEC.2019.8872325
[137] Fast tunable Mid-IR source pumped by a picosecond fiber laser, C.-E. Ouinten, F. Defossez, A. Gognau, Y. Hernandez, J.-B. Lecourt, R. Vallon, B. Parvitte, V. Zéninari, L. Lamard, A. Peremans, SPIE Proceedings 10896 – Solid State Lasers XXVIII: Technology and Devices, 1089602, 7 pages (2019) https://doi.org/10.1117/12.2507871
2018
[136] Monitoring gas-phase CO2 in the headspace of champagne glasses through combined diode laser spectrometry and micro-gas chromatography analysis, A.-L. Moriaux, R. Vallon, B. Parvitte, V. Zéninari, G. Liger-Belair, C. Cilindre, Food Chemistry 264, pp. 255-262 (2018), https://doi.org/10.1016/j.foodchem.2018.04.094
[135] Test and Development of an OPO-Based Spectrometer for SAFESIDE – An INTERREG V project for gases detection, F. Defossez, R. Vallon, B. Parvitte, S. Brohez, S. Guillemet, Y. Hernandez, V. Zéninari, Optics Infobase Conference papers - High-Brightness Sources and Light-driven Interactions: Mid-Infrared Coherent Sources, 2 pages (2018), https://doi.org/10.1364/EUVXRAY.2018.JT5A.19
[134] Intracavity Gas Detection with an extended-cavity Quantum Cascade Laser emitting @ 7.6 µm, L. Bizet, R. Vallon, B. Parvitte, G. Maisons, M. Carras, V. Zéninari, Optics Infobase Conference papers - High-Brightness Sources and Light-driven Interactions: Mid-Infrared Coherent Sources, 2 pages (2018), https://doi.org/10.1364/MICS.2018.MT3C.4
[133] Applications of IR Laser Spectrometry to the Monitoring of Gaseous CO2 in the Headspace of Champagne Glasses, R. Vallon, A.-L. Moriaux, B. Parvitte, C. Cilindre, G. Liger-Belair, V. Zéninari, Optics Infobase Conference papers - High-Brightness Sources and Light-driven Interactions: Mid-Infrared Coherent Sources, 2 pages (2018), https://doi.org/10.1364/EUVXRAY.2018.JT5A.13
[132] Gas-detecting device with very high sensitivity based on a Helmholtz resonator, C. Risser, V. Zéninari, B. Parvitte, Brevet US n° US15/769,516, Publication n° US 2018 0306704 (A1), (2018) https://patents.google.com/patent/US20180306704/en
[131] Monitoring of Gaseous CO2 in the Headspace of Champagne Glasses by Infrared Laser Spectrometry, R. Vallon, A.-L. Moriaux, B. Parvitte, C. Cilindre, G. Liger-Belair, V. Zéninari, Optics Infobase Conference papers - Imaging and Applied Optics: Laser Applications to Chemical, Security and Environmental Analysis, 2 pages (2018), https://doi.org/10.1364/3D.2018.JW4A.14
[130] Towards sub-mm-size Helmholtz Photoacoustic Cells for Atmospheric Gas Sensing: simulation and developments, V. Zéninari, C. Mohamed Ibrahim, R. Vallon, B. Parvitte, Optics Infobase Conference papers - Imaging and Applied Optics: Laser Applications to Chemical, Security and Environmental Analysis, 2 pages (2018), https://doi.org/10.1364/3D.2018.JM4A.26
[129] Detectorless Intracavity Technique with an EC-QCL for Atmospheric Gas Detection, R. Vallon, L. Bizet, B. Parvitte, G. Maisons, M. Carras, V. Zéninari, Optics Infobase Conference papers - Imaging and Applied Optics: Laser Applications to Chemical, Security and Environmental Analysis, 2 pages (2018), https://doi.org/10.1364/LACSEA.2018.LM5C.5
[128] Gas-detecting device with very high sensitivity based on a Helmholtz resonator, C. Risser, V. Zéninari, B. Parvitte, Brevet Européen n°EP2016080622, Publication n° EP 3 350 571 (A1), (2018) https://patents.google.com/patent/EP3350571A1/en
[127] Latest developments of a laser-based spectrometer devoted to the monitoring of gaseous CO2 for enological applications, R. Vallon, A.-L. Moriaux, B. Parvitte, C. Cilindre, G. Liger-Belair, V. Zéninari, Optics Infobase Conference papers - Advanced Photonics Congress: Optical Sensors Conference, 2 pages (2018) https://doi.org/10.1364/BGPPM.2018.JTu2A.72
[126] Latest results of an Intracavity-QCL based spectrometer for Atmospheric Gas Detection, B. Parvitte, L. Bizet, R. Vallon, G. Maisons, M. Carras, V. Zéninari, Optics Infobase Conference papers - Advanced Photonics Congress: Optical Sensors Conference, 2 pages (2018) https://doi.org/10.1364/BGPPM.2018.JTu2A.73
[125] Helmholtz-based photoacoustic sensors for trace gases detection, V. Zéninari, Optics Infobase Conference papers - Advanced Photonics Congress: Optical Sensors Conference, 2 pages (2018) https://doi.org/10.1364/SENSORS.2018.SeTh3E.1
[124] Development and validation of a diode laser sensor for gas-phase CO2 monitoring above champane and sparkling wines, A.-L. Moriaux, R. Vallon, C. Cilindre, G. Liger-Belair, B. Parvitte, V. Zéninari, Sensors and Actuators B : Chemical, 257, pp. 745-752 (2018), https://doi.org/10.1016/j.snb.2017.10.165
2017
[123] Gas-detecting device with very high sensitivity based on a Helmholtz resonator, C. Risser, V. Zéninari, B. Parvitte, Brevet International n° FR2016052741, Publication n° WO 2017 068301 (A1), (2017) https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2017068301
[122] Dispositif de détection de gaz à très forte sensibilité basé sur un résonateur de Hemholtz C. Risser, V. Zéninari, B. Parvitte, Brevet Français n° FR20150060028, Publication n° FR 3 042 866 (A1), (2017) https://bases-brevets.inpi.fr/fr/document/FR3042866.html
[121] Dispositif de détection de gaz à très forte sensibilité basé sur un résonateur de Hemholtz C. Risser, V. Zéninari, B. Parvitte, Brevet Français n° FR20150060724, Publication n° FR 3 042 867 (A1), (2017) https://bases-brevets.inpi.fr/fr/document/FR3042867.html
[120] Procédé et dispositif de détection de traces de gaz multiples V. Zéninari, B. Parvitte, L. Joly, G. Durry, R. Le Loarer, J. C. Garcia, R. Hamelin Brevet Français n° FR20100055954, Publication n° FR 2 963 102 (B1), (2017) https://patents.google.com/patent/FR2963102B1/en
[119] Dispositif de détection de gaz à très forte sensibilité basé sur un résonateur de Hemholtz C. Risser, V. Zéninari, B. Parvitte, Brevet Français n° FR20150060724, Publication n° FR 3 042 867 (B1), (2017) https://patents.google.com/patent/FR3042867B1
[118] Photoacoustic gas sensor with a Helmholtz cell M. Brun, S. Nicoletti, B. Parvitte, V. Zéninari Brevet US 13/450,551, Publication US patent n° US 9551829 (B2), (2017) https://patents.google.com/patent/US9551829
[117] Dispositif d’analyse de gaz à très forte sensibilité V. Zéninari, B. Parvitte, R. Vallon, C. Risser, L. Colin, J. C. Garcia, Brevet Français n° FR 3017950 (B1) (2017), https://patents.google.com/patent/FR3017950B1/
[116] Multi-gas sensing with quantum cascade laser array in the mid-infrared region, L. Bizet, R. Vallon, B. Parvitte, M. Brun, G. Maisons, M. Carras, V. Zéninari, Applied Physics B, pp. 123-145 (2017), https://doi.org/10.1007/s00340-017-6716-9
2016
[115] Miniaturized differential Helmholtz resonators for photoacoustic trace gas detection, J. Rouxel, J.-G. Coutard, S. Gidon, O. Lartigue, S. Nicoletti, B. Parvitte, R. Vallon, V. Zéninari, A. Glière, Sensors & Actuators B : Chemical, 236, pp. 1104-1110 (2016), https://doi.org/10.1016/j.snb.2016.06.074
[114] Simulation and design of compact Helmholtz photoacoustic cells for atmospheric gas sensing, B. Parvitte, R. Vallon, V. Zéninari, Optics Infobase Conference papers - Imaging and Applied Optics, 3 pages (2016), https://doi.org/10.1364/3D.2016.JT3A.9
[113] Line profile study of the R6 multicomponent of CH4 around 1.6 µm for the French-German climate mission MERLIN, V. Zéninari, R. Vallon, B. Parvitte, T. Delahaye, H. Tran, Optics Infobase Conference papers - Imaging and Applied Optics, 3 pages (2016), https://doi.org/10.1364/3D.2016.JT3A.13
[112] External cavity coherent quantum cascade laser array, R. Vallon, B. Parvitte, L. Bizet, G.M. De Naurois, B. Simozrag, G. Maisons, M. Carras, V. Zéninari, Infrared Physics and Technology, 76, pp. 415-420 (2016), https://doi.org/10.1016/j.infrared.2016.03.013
[111] Photoacoustic detection of methane in large concentrations with a Helmholtz sensor: Simulation and experimentation, V. Zéninari, R. Vallon, C. Risser, B. Parvitte, International Journal of Thermophysics, 37, 1, pp. 1-11 (2016), https://doi.org/10.1007/s10765-015-2018-9
2015
[110] Optimization and complete characterization of a photoacoustic gas detector C. Risser, B. Parvitte, R. Vallon, V. Zéninari Applied Physics B, 118, 2, pp. 319-326 (2015) https://doi.org/10.1007/s00340-014-5988-6
[109] Dispositif d’analyse de gaz à très forte sensibilité V. Zéninari, B. Parvitte, R. Vallon, C. Risser, L. Colin, J. C. Garcia, Brevet Français n° FR 3017950 (A1) (2015), https://bases-brevets.inpi.fr/fr/document/FR3017950.html
[108] Simulation and design of compact photoacoustic gas sensors, B. Parvitte, C. Risser, R. Vallon, M. Carras, V. Zéninari Optics InfoBase Conference Papers – CLEO/EUROPE – EQEC 2015 (2015) https://www.scopus.com/record/display.uri?eid=2-s2.0-85019522215&origin=resultslist
[107] Development of a Miniaturized Differential Photoacoustic Gas Sensor, J. Rouxel, J.-G. Coutard, S. Gidon, O. Lartigue, S. Nicoletti, B. Parvitte, R. Vallon, V. Zéninari, A. Glière, Procedia Engineering, 120, pp. 396–399 (2015), https://doi.org/10.1016/j.proeng.2015.08.650
2014
[106] Challenges in the Design and Fabrication of a Lab-on-a-Chip Photoacoustic Gas Sensor A.Glière, J. Rouxel, M. Brun, B. Parvitte, V. Zéninari, S. Nicoletti Sensors, 14, 1, pp. 957-974 (2014) https://doi.org/10.3390/s140100957
[105] Détecteur de gaz photoacoustique à cellule de Helmholtz M. Brun, S. Nicoletti,B. Parvitte, V. Zéninari Brevet Français n° FR20110053471, Publication n° FR 2974413 (B1), (2014) https://patents.google.com/patent/FR2974413B1/en
[104] Dispositif de détection de trace de gaz V. Zéninari, L. Joly, B. Parvitte, T. Decarpenterie, G. Durry, R. Le Loarer Brevet Français n° FR20110056650, Publication n° FR 2 978 247 (B1), (2014) https://patents.google.com/patent/FR2978247B1
[103] Coherent quantum cascade laser array at 8.2 µm in extended-cavity system R. Vallon, B. Parvitte, G. Maisons, M. Carras, V. Zéninari Optics InfoBase Conference Papers – LACSEA 2014 – 107131 (2014) https://doi.org/10.1364/LACSEA.2014.LM4D.2
[102] Complete characterization of trace gas photoacoustic sensors using a finite element method B. Parvitte, C. Risser, R. Vallon, V. Zéninari Optics InfoBase Conference Papers – Applied Industrial Optics: Spectroscopy, Imaging and Metrology (2014) https://doi.org/10.1364/AIO.2014.JTu4A.32
[101] Simulations and developments of Si-integrated photoacoustic cells for the optical sensing of the atmosphereV. Zéninari, J. Rouxel, B. Parvitte, R. Vallon, M. Brun, S. Nicoletti, A.Glière Optics InfoBase Conference Papers – Applied Industrial Optics: Spectroscopy, Imaging and Metrology (2014) https://doi.org/10.1364/AIO.2014.JTu4A.44
[100] Development of an external-cavity quantum cascade laser spectrometer at 7.5 µm and applications to gas detection D. Mammez, R. Vallon, B. Parvitte, M.-H. Mammez, M. Carras, V. Zéninari Applied Physics B, 116, 4, pp. 951-958 (2014) https://doi.org/10.1007/s00340-014-5782-5
2013
[99] Quantitative simulation of photoacoustic signals using finite element modelling software B. Parvitte, C. Risser, R. Vallon, V. Zéninari Applied Physics B, 111, 3, pp. 383-389 (2013) https://doi.org/10.1007/s00340-013-5344-2
[98] Device for detecting trace gases V. Zéninari, L. Joly, B. Parvitte, T. Decarpenterie, G. Durry, R. Le Loarer Brevet International n°PCT/EP2012/063897, Publication n° WO 2013 010984 (A2), (2013) https://patents.google.com/patent/WO2013010984A3/fr
[97] Photoacoustic gas sensing with a commercial external-cavity quantum cascade laser at 10.5 μm D. Mammez, C. Stoeffler, J. Cousin, R. Vallon, M.-H. Mammez, L. Joly, B. Parvitte, V. Zéninari Infrared Physics and Technology, 61, pp. 14-19 (2013) https://doi.org/10.1016/j.infrared.2013.07.002
[96] Photoacoustic gas sensor with Helmholtz cell M. Brun, S. Nicoletti, B. Parvitte, V. Zéninari Brevet Européen n° EP20120163300, Publication n° EP 2 515 096 (B1), (2012) https://patents.google.com/patent/EP2515096B1/en
[95] A coupled model for the simulation of miniaturised and integrated photoacoustic gas detector A. Glière, J. Rouxel, B. Parvitte, S. Boutami, V. Zéninari International Journal of Thermophysics, 34, 11, pp. 2119-2135 (2013) https://doi.org/10.1007/s10765-013-1534-8
[94] A coherent quantum cascade laser array for high power emission R. Vallon, B. Parvitte, D. Mammez, G.-M. De Naurois, M. Carras, V. Zéninari Optics InfoBase Conference Papers – CLEO/EUROPE – 6800810 (2013) https://doi.org/10.1109/CLEOE-IQEC.2013.6800810
[93] Method and device for detecting trace amounts of many gases V. Zéninari, B. Parvitte, L. Joly, G. Durry, R. Le Loarer, J. C. Garcia, R. Hamelin Brevet Européen n° EP20110752269 20110721, Publication n° EP 2 596 331 (A1), (2013) https://patents.google.com/patent/EP2596331A1/en
[92] Method and device for detecting trace amounts of many gases V. Zéninari, B. Parvitte, L. Joly, G. Durry, R. Le Loarer, J. C. Garcia, R. Hamelin Brevet US 13/811,364, Publication n° US 2013 0205871 (A1), (2013) https://patents.google.com/patent/US20130205871
[91] Method and device for emitting a laser beam in a housing V. Zéninari, B. Parvitte, L. Joly, V. Lecocq, G. Durry,R. Hamelin, R. Le Loarer Brevet Européen n° EP20110811105, Publication n° EP 2 652 845 (A1), (2013) https://patents.google.com/patent/EP2652845A1/en
[90] Method and device for emitting a laser beam in a housing V. Zéninari, B. Parvitte, L. Joly, V. Lecocq, G. Durry,R. Hamelin, R. Le Loarer Brevet US 13/994,996, Publication n° US 2013 0287053 (A1), (2013) https://patents.google.com/patent/US20130287053
[89] Dispositif de détection de trace de gaz V. Zéninari, L. Joly, B. Parvitte, T. Decarpenterie, G. Durry, R. Le Loarer Brevet Français n° FR20110056650, Publication n° FR 2 978 247 (A1), (2013) https://bases-brevets.inpi.fr/fr/document/FR2978247.html
[88] Device for detecting trace gases V. Zéninari, L. Joly, B. Parvitte, T. Decarpenterie, G. Durry, R. Le Loarer Brevet International n°PCT/EP2012/063897, Publication n° WO 2013 010984 (A2), (2013) https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2013010984
[87] Optical waveguide M. Brun, S. Nicoletti,B. Parvitte, V. Zéninari Brevet Européen n° EP20130175136, Publication n° EP 2 662 714 (A1), (2013) https://patents.google.com/patent/EP2662714A1/en
[86] Optical waveguide having a varying index gradient M. Brun, S. Nicoletti,B. Parvitte, V. Zéninari Brevet US 13/952,472, Publication n° US 2013 0315547 (A1), (2013) https://patents.google.com/patent/US20130315547/en
2012
[85] Self-induced pressure shift and temperature dependence measurements of CO2 at 2.05 micron with a tunable diode laser spectrometer J.S. Li, G. Durry, J. Cousin, L. Joly, B. Parvitte, V. Zéninari Spectrochimica Acta Part A, 85, pp. 74-78 (2012) https://doi.org/10.1016/j.saa.2011.09.016
[84] Unraveling the evolving nature of gaseous and dissolved carbon dioxide in champagne wines: A state-of-the-art review, from the bottle to the tasting glass G. Liger-Belair, G. Polidori, V. Zéninari Analytica Chimica Acta, 732, pp. 1-15 (2012) https://doi.org/10.1016/j.aca.2011.10.007
[83] Procédé et dispositif d’émission d’un faisceau laser dans un boitier B. Parvitte, L. Joly, V. Lecocq, G. Durry, V. Zéninari, R. Hamelin, R. Le Loarer Brevet Français n° FR20100060587, Publication n° FR 2 969 315 (B1),(2012) https://patents.google.com/patent/FR2969315B1
[82] Wavelet denoising for infrared laser spectroscopy and gas detection I. Mappe-Fogaing, L. Joly, N. Dumelie, J.S. Li, G. Durry, B. Parvitte, V. Zéninari Applied Spectroscopy, 66, 6, pp. 700-710 (2012) https://doi.org/10.1366/11-06459
[81] Modelization of photoacoustic trace gases sensors B. Parvitte, C. Risser, R. Vallon, V. Zéninari Proceedings of the 2012 Comsol Conference in Milan, pp. 1-5 (2012) http://www.comsol.com/paper/download/151553/parvitte_paper.pdf
[80] Carbon dioxide and ethanol release from champagne glasses under standard tasting conditions G. Liger-Belair, F. Beaumont, M. Bourget, H. Pron, B. Parvitte, V. Zéninari, G. Polidori, C. Cilindre Advances in Food and Nutrition Research, 67, pp. 289-340 (2012) https://doi.org/10.1016/B978-0-12-394598-3.00007-1
[79] Procédé et dispositif de détection de traces de gaz multiples V. Zéninari, B. Parvitte, L. Joly, G. Durry, R. Le Loarer, J. C. Garcia, R. Hamelin Brevet Français n° FR20100055954, Publication n° FR 2 963 102 (A1), (2012) https://bases-brevets.inpi.fr/fr/document/FR2963102.html
[78] Method and device for detecting trace amounts of many gases V. Zéninari, B. Parvitte, L. Joly, G. Durry, R. Le Loarer, J. C. Garcia, R. Hamelin Brevet International n°PCT/FR2011/051766, Publication n° WO 2012 010806 (A1), (2012) https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2012010806
[77] Procédé et dispositif d’émission d’un faisceau laser dans un boitier B. Parvitte, L. Joly, V. Lecocq, G. Durry, V. Zéninari,R. Hamelin, R. Le Loarer Brevet Français n° FR20100060587, Publication n° FR 2 969 315 (A1),(2012) https://bases-brevets.inpi.fr/fr/document/FR2969315.html
[76] Method and device for emitting a laser beam in a housing V. Zéninari, B. Parvitte, L. Joly, V. Lecocq, G. Durry,R. Hamelin, R. Le Loarer Brevet International n°PCT/FR2011/052970, Publication n° WO 2012 080652 (A1), (2012) https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2012080652
[75] Détecteur de gaz photoacoustique à cellule de Helmholtz M. Brun, S. Nicoletti,B. Parvitte, V. Zéninari Brevet Français n° FR20110053471, Publication n° FR 2974413 (A1), (2012) https://bases-brevets.inpi.fr/fr/document/FR2974413.html
[74] Photoacoustic gas sensor with Helmholtz cell M. Brun, S. Nicoletti,B. Parvitte, V. Zéninari Brevet Européen n° EP20120163300, Publication n° EP 2 515 096 (A1), (2012) https://data.epo.org/publication-server/rest/v1.0/publication-dates/20121024/patents/EP2515096NWA1/document.pdf
[73] Photoacoustic gas sensor with a Helmholtz cell M. Brun, S. Nicoletti,B. Parvitte, V. Zéninari Brevet US 13/450,551, Publication US patent n° US 2012 0266655 (A1), (2012) https://patents.google.com/patent/US20120266655
2011
[72] Continuous-wave quantum cascade lasers absorption spectrometers for trace gas detection in the atmosphere L. Joly, V. Zeninari, T. Decarpenterie, J. Cousin, B. Grouiez, D. Mammez, G. Durry, M. Carras, X. Marcadet, B. Parvitte Laser Physics, 21, 4, pp. 805-812 (2011) https://doi.org/10.1134/S1054660X11070127
[71] Study of a thermophysical system with two time constants using an open photoacoustic cell B. Bonno, V. Zéninari, L. Joly, B. Parvitte International Journal of Thermophysics, 32, 3, pp. 630-640 (2011) https://doi.org/10.1007/s10765-011-0918-x
[70] Tunable diode laser measurement of pressure-induced shift coefficients of CO2 around 2.05 μm for Lidar application J.S. Li, G. Durry, J. Cousin, L. Joly, B. Parvitte, P.H. Flamant, F. Gibert, V. Zéninari Journal of Quantitative Spectroscopy and Radiative Transfer, 112, 9, pp. 1411-1419 (2011) https://doi.org/10.1016/j.jqsrt.2011.01.030
[69] Development of a versatile atmospheric N2O sensor based on quantum cascade laser technology at 4.5 µm L. Joly, T. Decarpenterie, N. Dumelié, X. Thomas, I. Mappe-Fogaing, J. Cousin, D. Mammez, R. Vallon, G. Durry, B. Parvitte, M. Carras, X. Marcadet, V. Zéninari Applied Physics B, 103, 3, pp. 717-723 (2011) https://doi.org/10.1007/s00340-011-4522-3
2010
[68] Photoacoustic spectroscopy for trace gas detection with cryogenic and room-temperature continuous wave quantum cascade lasers V. Zéninari, A. Grossel, L. Joly, T. Decarpenterie, B. Grouiez, B. Bonno, B. Parvitte Central European Journal of Physics, 8, 2, pp. 194-201 (2010) https://doi.org/10.2478/s11534-009-0042-8
[67] Continuous-wave Distributed FeedBack Quantum Cascade Laser Spectrometers for the study of the Atmosphere V. Zéninari, B. Parvitte, B. Grouiez, L. Joly Advances in Laser and Optics Research, Vol. 4, Nova Publisher Ed.; Chapitre 2, pp. 49-82, ISBN: 978-1-60741-854-2, (2010) https://www.scopus.com/inward/record.uri?eid=2-s2.0-85049243917&partnerID=40&md5=0ea0241dc70115bc0329b20c2ab2756a",Book Chapter,,Scopus,2-s2.0-85049243917
[66] Near infrared diode laser spectroscopy of C2H2, H2O, CO2 and their isotopologues and the application to TDLAS, a tunable diode laser spectrometer for the Martian PHOBOS-Grunt space mission. G. Durry, J.S. Li, I. Vinogradov, A. Titov, A.V. Kalyuzhny, L. Joly, J. Cousin, T. Decarpenterie, N. Amarouche, X. Liu, B. Parvitte, O. Korablev, M. Gerasimov, V. Zéninari Applied Physics B, 99, 1-2, pp. 339-351 (2010) https://doi.org/10.1007/s00340-010-3924-y
[65] Self-broadening coefficients and positions of acetylene around 1.533 µm studied by high-resolution diode laser absorption spectrometry J.S. Li, G. Durry, J. Cousin, L. Joly, B. Parvitte, V. Zéninari Journal of Quantitative Spectroscopy and Radiative Transfer, 111, 15, pp. 2332-2340 (2010) https://doi.org/10.1016/j.jqsrt.2010.04.025
[64] Pulsed quantum cascade laser spectroscopy with intermediate-size pulses: application to NH3 in the 10 µm region B. Grouiez, V. Zéninari, L. Joly, B. Parvitte Applied Physics B, 100, 2, pp. 265-273 (2010) https://doi.org/10.1007/s00340-010-3993-y
2009
[63] Intercomparison of 2µm-Heterodyne Differential Absorption Lidar, Laser Diode Spectrometer, LICOR NDIR analyzer and flasks measurements of near-ground atmospheric CO2 mixing ratio F.Gibert, L. Joly, I. XuEref-Rémy, M. Schmidt, A. Royer, P.H. Flamant, M. Ramonet, B. Parvitte, G. Durry, V. Zéninari Spectrochimica Acta Part A, 71, 5, pp. 1914-1921 (2009) https://doi.org/10.1016/j.saa.2008.07.010
[62] Development of a compact CO2 sensor based on near-infrared laser technology for enological applications M. Mulier, V. Zéninari, L. Joly, T. Decarpenterie, B. Parvitte, P. Jeandet, G. Liger-Belair Applied Physics B: Lasers and Optics, 94, 4, pp. 725–733 (2009) https://doi.org/10.1007/s00340-009-3389-z
[61] Alternative method for gas detection using pulsed quantum cascade laser spectrometers B. Grouiez, B. Parvitte, L. Joly, V. Zéninari Optics Letters, 34, 2, pp. 181-183 (2009) https://doi.org/10.1364/OL.34.000181
[60] Laser diode absorption spectroscopy for accurate CO2 line parameters at 2 µm. Consequences for space-based DIAL measurements and potential biases L. Joly, F. Marnas, F. Gibert, D. Bruneau, B. Grouiez, P.H. Flamant, G. Durry, N. Dumelie, B. Parvitte, V. Zéninari Applied Optics, 48, 29, pp. 5475-5483 (2009) https://doi.org/10.1364/AO.48.005475
[59] Focus sur la physique des bulles et la chimie de la mousse du Champagne P. Jeandet, C. Cilindre, R. Marchal, S. Villaume, A. Conreux, M. Parmentier, Y. Vasserot, V. Zeninari, R. Gougeon, P. Schmitt-Kopplin, G. Polidori, G. Liger-Belair La Champagne Viticole, 750, pp. 42-46 (2009) http://www.helmholtz-muenchen.de/fileadmin/IOEC/IMG/biogeochemistry/press/December__Champagne/Champagne_Viticole_750_2009_42_Focus_sur_la_physique_des_bulles_et_la_chimie_de_la_mousse_de_Champagne.pdf
[58] Diode laser spectroscopy of two acetylene isotopologues (12C2H2, 13C12CH2) in the 1.533 µm region for the PHOBOS-Grunt space mission J.S. Li, L. Joly, J. Cousin, B. Parvitte, B. Bonno, V. Zéninari, G. Durry Spectrochimica Acta Part A, 74, 5, pp. 1204-1208 (2009) https://doi.org/10.1016/j.saa.2009.09.037
2008
[57] Laser diode spectroscopy of the H2O isotopologues in the 2.64 micron region for the in situ monitoring of the Martian atmosphere G. Durry, L. Joly, T. Le Barbu, B. Parvitte, V. Zéninari Infrared Physics and Technology, 51, 3, pp. 229–235 (2008) https://doi.org/10.1016/j.infrared.2007.05.004
[56] Comparison of a Quantum Cascade Laser used in both cw and pulsed mode. Application to the study of SO2 lines around 9 µm B. Grouiez, B. Parvitte, L. Joly, D. Courtois, V. Zéninari Applied Physics B: Lasers and Optics, 90, 2, pp. 177–186 (2008) https://doi.org/10.1007/s00340-007-2857-6
[55] A complete study of line parameters of CO2 around 4845 cm-1 for Lidar applications L. Joly, F. Gibert, B. Grouiez, A. Grossel, B. Parvitte, G. Durry, V. Zéninari Journal of Quantitative Spectroscopy and Radiative Transfer, 109, 3, pp. 426-434 (2008) https://doi.org/10.1016/j.jqsrt.2007.06.003
[54] Development of a spectrometer using a cw DFB quantum cascade laser operating at room temperature for the simultaneous analysis of N2O and CH4 in the Earth’s atmosphere L. Joly, C. Robert, B. Parvitte, V. Catoire, G. Durry, G. Richard, B. Nicoullaud, V. Zéninari Applied Optics, 47, 9, pp. 1206-1214 (2008) https://doi.org/10.1364/AO.47.001206
[53] Laser diode spectroscopy of H2O at 2.63 micron for atmospheric applications G. Durry, N. Amarouche, L. Joly, X. Liu, B. Parvitte, V. Zéninari Applied Physics B: Lasers and Optics, 90, 3-4, pp. 573–580 (2008) https://doi.org/10.1007/s00340-007-2884-3
[52] Quantum cascade laser spectroscopy of N2O in the 7.9 µm region for the in situ monitoring of the atmosphere A. Grossel, V. Zéninari, B. Parvitte, L. Joly, G. Durry, D. Courtois Journal of Quantitative Spectroscopy and Radiative Transfer, 109, 10, pp. 1845-1855 (2008) https://doi.org/10.1016/j.jqsrt.2007.12.002
[51] Spectroscopy: Quantum-cascade-laser spectrometer measures gases in atmosphere V.C. Coffey, V. Zéninari et al Laser Focus World, 44, 6, pp. 31-33 (2008) https://www.laserfocusworld.com/test-measurement/test-measurement/article/16563596/spectroscopy-quantumcascadelaser-spectrometer-measures-gases-in-atmosphere
[50] A case study of CO2, CO and particles content evolution in the suburban atmospheric boundary layer using a 2-μm Doppler DIAL, a 1-µm backscatter lidar and an array of in-situ sensors F.Gibert, I. XuEref-Rémy, L. Joly, M. Schmidt, J. Cuesta, K. J. Davis, M. Ramonet, P.H. Flamant, B. Parvitte, V. Zéninari Boundary-Layer Meteorology, 128, 3, pp. 381-401 (2008) https://doi.org/10.1007/s10546-008-9296-8
2007
[49] Study of SO2 line parameters with a quantum cascade laser spectrometer around 1090 cm-1. Comparison with theoretical calculations of the nu1 and nu1 + nu2 – nu2 bands of 32SO2 and the nu1 band of 34SO2 V. Zéninari, L. Joly, B. Grouiez, B. Parvitte, A. Barbe Journal of Quantitative Spectroscopy and Radiative Transfer, 105, 2, pp. 312-325 (2007) https://doi.org/10.1016/j.jqsrt.2006.11.006
[48] Spectrométrie photoacoustique ; Application à l’analyse des gaz V. Zéninari Techniques de l’Ingénieur, P2890, pp. 1-11 (2007) https://www.techniques-ingenieur.fr/base-documentaire/mesures-analyses-th1/spectrometries-42390210/spectrometrie-photoacoustique-p2890/
[47] Spectrométrie photoacoustique ; Application à l’analyse des gaz : Pour en savoir plus V. Zéninari Techniques de l’Ingénieur, Doc. P2890, pp. 1-2 (2007) https://www.techniques-ingenieur.fr/base-documentaire/mesures-analyses-th1/spectrometries-42390210/spectrometrie-photoacoustique-p2890/
[46] Photoacoustic detection of nitric oxide with a Helmholtz resonant quantum cascade laser sensor A. Grossel, V. Zéninari, B. Parvitte, L. Joly, G. Durry, D. Courtois Infrared Physics and Technology, 51, 2, pp. 95-101 (2007) https://doi.org/10.1016/j.infrared.2006.11.004
[45] Development of a compact CO2 sensor open to the atmosphere and based on near-infrared laser technology at 2.68 µm L. Joly, B. Parvitte, V. Zéninari, G. Durry Applied Physics B: Lasers and Optics, 86, 4, pp. 743-748 (2007) https://doi.org/10.1007/s00340-006-2568-4
[44] Spectrométrie laser infrarouge et détection de gaz à l’aide de lasers à cascade quantique A. Grossel, D. Courtois, V. Zéninari Bulletin POLOQ de la DGA, 2007-1, pp. 75-82 (2007) http://www.defense.gouv.fr/dga
[43] Optimization of a compact photoacoustic quantum cascade laser spectrometer for atmospheric flux measurements: application to the detection of methane and nitrous oxide A. Grossel, V. Zéninari, B. Parvitte, L. Joly, D. Courtois Applied Physics B: Lasers and Optics, 88, 3, pp. 483–492 (2007) https://doi.org/10.1007/s00340-007-2719-2
2006
[42] Water vapor isotope ratio measurements in air with a quantum cascade laser spectrometer L. Joly, V. Zéninari, B. Parvitte, D. Courtois, G. Durry Optics Letters, 31, 2, pp. 143-145 (2006) https://doi.org/10.1364/OL.31.000143
[41] Line strengths and self-broadening coefficients of carbon dioxide isotopologues (13CO2 and 18O12C16O) near 2.04µm for the in situ laser sensing of the Martian atmosphere T. Le Barbu, V. Zéninari, B. Parvitte, D. Courtois, G. Durry Journal of Quantitative Spectroscopy and Radiative Transfer, 98, 2, pp. 264-276 (2006) https://doi.org/10.1016/j.jqsrt.2005.05.089
[40] Diode laser spectroscopy of H2O and CO2 in the 1.877 µm region for the in situ monitoring of the Martian atmosphere T. Le Barbu, B. Parvitte, V. Zéninari, I. Vinogradov, O. Korablev, G. Durry Applied Physics B: Lasers and Optics, 82, 1, pp. 133-140, (2006) https://doi.org/10.1007/s00340-005-2020-1
[39] The absorption line profiles of H2O near 1.39 µm in binary mixtures with N2, O2, and H2 at low pressures Y.N. Ponomarev, I.V. Ptashnik, V. Zéninari, B. Parvitte, D. Courtois, G. Durry Optics and Spectroscopy, 100, 5, pp. 682-688 (2006) https://doi.org/10.1134/S0030400X06050079
[38] New improvements in methane detection using a Helmholtz resonant photoacoustic laser sensor: a comparison between near-IR diode lasers and mid-IR quantum cascade lasers A. Grossel, V. Zéninari, L. Joly, B. Parvitte, G. Durry, D. Courtois Spectrochimica Acta Part A, 63, 5, pp. 1021-1028 (2006) https://doi.org/10.1016/j.saa.2005.11.002
[37] A complete study of the line intensities of four bands of CO2 around 1.6 and 2.0 µm: A comparison between Fourier transform and diode laser measurements L. Régalia-Jarlot, V. Zéninari, B. Parvitte, A. Grossel, X. Thomas, P. Von Der Heyden, G. Durry Journal of Quantitative Spectroscopy and Radiative Transfer, 101, 2, pp. 325-336 (2006) https://doi.org/10.1016/j.jqsrt.2005.11.021
[36] A spectroscopic study of water vapor isotopologues H216O, H218O and HDO using a continuous wave DFB quantum cascade laser in the 6.7µm region for atmospheric applications L. Joly, B. Parvitte, V. Zéninari, D. Courtois, G. Durry Journal of Quantitative Spectroscopy and Radiative Transfer, 102, 2, pp. 129-138 (2006) https://doi.org/10.1016/j.jqsrt.2005.11.023
[35] Development of a compact instrument using fiber laser based Difference-Frequency Generation source for chemical gas detection J. Cousin, W. Chen, D. Boucher, S. Kassi, D. Romanini, V. Zéninari, B. Parvitte, D. Courtois IEEE Proc. Joint 31st Int. Conf. Inf. Mill. Waves and 14th Conf. THz Elec., p. 582 (2006) https://doi.org/10.1109/ICIMW.2006.368789
[34] Laboratory spectroscopic calibration of infrared tunable laser spectrometers for the in situ sensing of the Earth and Martian atmospheres V. Zéninari, B. Parvitte, L. Joly, T. Le Barbu, N. Amarouche, G. Durry Applied Physics B: Lasers and Optics, 85, 2-3, pp. 265-272 (2006) https://doi.org/10.1007/s00340-006-2331-x
2005
[33] Pressure-broadening coefficients and line strengths of H2O near 1.39 µm: Application to the in situ sensing of the middle atmosphere with balloonborne diode lasers G. Durry, V. Zéninari, B. Parvitte, T. Le Barbu, F. Lefèvre, J. Ovarlez, R.R. Gamache Journal of Quantitative Spectroscopy and Radiative Transfer, 94, 3-4, pp. 387-403 (2005) https://doi.org/10.1016/j.jqsrt.2004.09.033
2004
[32] Diode laser spectroscopy of CO2 in the 1.6 µm region for the in situ sensing of the middle atmosphere, I. Pouchet, V. Zéninari, B. Parvitte, G. Durry,Journal of Quantitative Spectroscopy and Radiative Transfer, 83, 3-4, pp. 619-628 (2004) https://doi.org/10.1016/S0022-4073(03)00108-0
[31] Measured and calculated parameters of water vapor line contour induced by hydrogen and helium pressure in the 1.4 µm region V. Zéninari, B. Parvitte, D. Courtois, I. Pouchet, G. Durry, N.N. Lavrentieva, Y.N. Ponomarev SPIE Proc. – The International Society for Optical Engineering, 5311, pp. 234-239 (2004) https://doi.org/10.1117/12.545682
[30] Infrared laser heterodyne systems B. Parvitte, V. Zéninari, C. Thiébeaux, A. Delahaigue, D. Courtois Spectrochimica Acta Part A, 60, 5, pp. 1193-1213 (2004) https://doi.org/10.1016/j.saa.2003.07.006
[29] In situ sensing of atmospheric CO2 with laser diodes near 2.05µm: a spectroscopic study V. Zéninari, A. Vicet, B. Parvitte, L. Joly, G. Durry Infrared Physics and Technology, 45, 3, pp. 229-237 (2004) https://doi.org/10.1016/j.infrared.2003.11.004
[28] Preliminary results of heterodyne detection with quantum cascade lasers in the 9.1µm region B. Parvitte, L. Joly, V. Zéninari, D. Courtois Spectrochimica Acta Part A, 60, 14, pp. 3285-3290 (2004) https://doi.org/10.1016/j.saa.2003.12.053
[27] In situ sensing of the middle atmosphere with balloonborne near-IR laser diodes G. Durry, N. Amarouche, V. Zéninari, B. Parvitte, T. Le Barbu, J. Ovarlez Spectrochimica Acta Part A, 60, 14, pp. 3371-3379 (2004) https://doi.org/10.1016/j.saa.2003.11.050
[26] Pressure broadening and shift coefficients of H2O due to perturbation by N2, O2, H2 and He in the 1.39 µm region: experiment and calculations V. Zéninari, B. Parvitte, D. Courtois, N.N. Lavrentieva, Y.N. Ponomarev, G. Durry Molecular Physics, 102, 16-17, pp. 1697-1706 (2004) https://doi.org/10.1080/00268970412331287133
2003
[25] Methane detection on the sub-ppm level with a near-infrared diode laser photoacoustic sensor, V. Zéninari, B. Parvitte, D.Courtois, V.A. Kapitanov, Y.N. Ponomarev, Infrared Physics and Technology, 44, 4, pp. 253-261 (2003) https://doi.org/10.1016/S1350-4495(03)00135-X
[24] Dispositif de détection de gaz, V. Zéninari, B. Parvitte, D. Courtois, V.A. Kapitanov, Y.N. Ponomarev, Brevet Français n° 00 12757, Publication n° FR 2 815 122 (B1), (2003) https://patents.google.com/patent/FR2815122B1/en
[23] Pressure lineshift and broadening coefficient of H2O by hydrogen and helium in the 1.39µm region with a tunable diode laser spectrometer, V. Zéninari,B. Parvitte, D. Courtois, I. Pouchet, G. Durry, Y.N. Ponomarev, Atmospheric and Oceanic Optics, 16, 3, pp. 189-192 (2003) http://ao.iao.ru/en/content/vol.16-2003/iss.03/?&annot=8
[22] Gas detection device,V. Zéninari, B. Parvitte, D. Courtois, V.A. Kapitanov, Y.N. Ponomarev, Brevet International n°PCT/FR2002/001155, Publication n° WO 2003 083455 (A1), (2003) https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2003083455
[21] Spectroscopic study of the nu1 band of SO2 using a cw DFB QCL at 9.1µm, L. Joly, V. Zéninari, B. Parvitte, D. Weidmann, D. Courtois, Y. Bonetti, T. Aellen, M. Beck, J. Faist, D. Hofstetter, Applied Physics B: Lasers and Optics, 77, 6-7, pp. 703-706 (2003), https://doi.org/10.1007/s00340-003-1310-8
[20] Gas detection device,V. Zéninari, B. Parvitte, D. Courtois, V.A. Kapitanov, Y.N. Ponomarev, Brevet Australien n° 20020307967 20020403, Publication n° AU 2002 307967 (A1), (2003), https://patents.google.com/patent/AU2002307967A1/en
2002
[19] Diode laser spectroscopy of H2O in the 7165-7185 cm-1 range for atmospheric applications, B. Parvitte, V. Zéninari, I. Pouchet, G. Durry, Journal of Quantitative Spectroscopy and Radiative Transfer, 75, 4, pp. 493-505 (2002) https://doi.org/10.1016/S0022-4073(02)00033-X
[18] Optimisation of photoacoustic resonant cells with commercial microphones for diode laser gas detection, V.A. Kapitanov, V. Zéninari, B. Parvitte, D. Courtois, Y.N. Ponomarev, Spectrochimica Acta Part A, 58, 11, pp. 2397-2404 (2002) https://doi.org/10.1016/S1386-1425(02)00054-9
[17] In situ measurement of H2O and CH4 with telecommunication laser diodes in the lower stratosphere: dehydration and indication of a tropical air intrusion at mid-latitudes, G. Durry, A. Hauchecorne, J. Ovarlez, H. Ovarlez, I. Pouchet, V. Zéninari, B. Parvitte, Journal of Atmospheric Chemistry, 43, 3, pp. 175-194 (2002) https://doi.org/10.1023/A:1020674208207
[16] Differential Helmholtz resonant photoacoustic cell for spectroscopy and gas analysis with room temperature diode lasers, K. Song, H.K. Cha, V.A. Kapitanov, Y.N. Ponomarev, A.P. Rostov, D. Courtois, B. Parvitte, V. Zéninari, Applied Physics B: Lasers and Optics, 75, 2-3, pp. 215-227 (2002) https://doi.org/10.1007/s00340-002-1000-y
[15] Detection and analysis of atmospheric gases by infrared laser spectroscopy D. Courtois, A. Delahaigue, B. Parvitte, C. Thiébeaux, D. Weidmann, V. Zéninari Recent Research Developments in Applied Spectroscopy Vol. 4, Research Signpost Ed., ISBN 81-7736-197-X, pp. 1-22 (2002) http://www.ressign.com/home.aspx
[14] Dispositif de détection de gaz, V. Zéninari, B. Parvitte, D. Courtois, V.A. Kapitanov, Y.N. Ponomarev, Brevet Français n° 00 12757, Publication n° FR 2 815 122 (A1), (2002) https://bases-brevets.inpi.fr/fr/document/FR2815122.html
2001
[13] Measurements of air and noble gases broadening and shift coefficients of the methane R3 triplet of 2nu3band, V. Zéninari, B. Parvitte, D. Courtois, V.A. Kapitanov, Y.N. Ponomarev, Applied Physics B: Lasers and Optics, 72, 8, pp. 953–959 (2001) https://doi.org/10.1007/s003400100586
2000
[12] Photoacoustic measurements of the vibrational relaxation of the selectively excited ozone (nu3) molecule in pure ozone and its binary mixtures with O2, N2, and noble gases, V. Zéninari, B.A. Tikhomirov, Y.N. Ponomarev, D. Courtois , Journal of Chemical Physics, 112, 4, pp. 1835-1843 (2000) https://doi.org/10.1063/1.480747
1999
[11] Design and characteristics of a differential Helmholtz resonant photoacoustic cell for infrared gas detection, V. Zéninari, V.A. Kapitanov, D. Courtois, Y.N. Ponomarev, Infrared Physics and Technology, 40, 1, pp. 1-23 (1999) https://doi.org/10.1016/S1350-4495(98)00038-3
[10] Helmholtz resonant photoacoustic cell for spectroscopy of weakly absorbing gases and gas analysis, V.A. Kapitanov, V. Zéninari, D. Courtois, Y.N. Ponomarev, Atmospheric and Oceanic Optics, 12, 10, pp. 928-940 (1999) http://ao.iao.ru/en/content/vol.12-1999/iss.10/?&annot=1024
[9] Optical acoustic gas analyzer, V.A. Kapitanov, Y.N. Ponomarev, D. Courtois, V. Zéninari, Brevet Russe n° RU 10 461 (U1) (1999) https://www1.fips.ru/en/
1998
[8] Tunable diode laser spectrometer apparatus function, M.R. De Backer-Barilly, B. Parvitte, X. Thomas, V. Zéninari, D. Courtois, Journal of Quantitative Spectroscopy and Radiative Transfer, 59, 3-5, pp. 345-352 (1998) https://doi.org/10.1016/S0022-4073(97)00110-6
[7] Preliminary results on photoacoustic study of the relaxation of vibrationally excited ozone (nu3), V. Zéninari, B.A. Tikhomirov, Y. N. Ponomarev, D. Courtois Journal of Quantitative Spectroscopy and Radiative Transfer, 59, 3-5, pp. 369-375 (1998) https://doi.org/10.1016/S0022-4073(97)00108-8
[6] Linewidth narrowing of 10 µm diode lasers by external feedback, B. Parvitte, V. Zéninari, D. Courtois, A. Delahaigue, C. Thiébeaux, T. Beyer, H. Schlegelmich, A. Lambrecht, M. Tacke, Journal of Quantitative Spectroscopy and Radiative Transfer, 59, 3-5, pp. 361-368 (1998) https://doi.org/10.1016/S0022-4073(97)00132-5
[5] Vibrational kinetics of the ozone molecule in binary mixtures with noble gases, O.Y. Nikiforova, Y.N. Ponomarev, B.A. Tikhomirov, V. Zéninari, D. Courtois, SPIE Proc. – The International Society for Optical Engineering, 3583, pp. 75-79 (1998) https://doi.org/10.1117/12.336993
[4] An instrument for atmospheric detection of NH3 by laser heterodyne radiometry, V. Zéninari, B. Parvitte, D. Courtois, A. Delahaigue, C. Thiébeaux, Journal of Quantitative Spectroscopy and Radiative Transfer, 59, 3-5, pp. 353-359 (1998) https://doi.org/10.1016/S0022-4073(97)00119-2
1997
[3] Study of vibrational relaxation of O3 (001) using the photoacoustic technique , D. Courtois, B. Parvitte, Y.N. Ponomarev, O.V. Tikhomirova, B.A. Tikhomirov, V. Zéninari, Chinese Journal of Acoustics, 16, 4, pp. 372-376 (1997) http://caod.oriprobe.com/articles/34770802/Study_of_vibrational_relaxation_of_O_sub_3__sub___001_using_photoacous.htm
1996
[2] Absolute intensity measurement of nu3 ozone line at saturated vapor pressure with a laser heterodyne spectrometer, V. Zéninari, M.R. De Backer, B. Parvitte, D. Courtois, Applied Physics B: Lasers and Optics, 63, 2, pp. 179-183 (1996) https://doi.org/10.1007/BF01095270
1995
[1] Precise and absolute intensity measurement of the nu3 (10,5,6)-(9,5,5) ozone line with high resolution spectrometer, M.R. De Backer, B. Parvitte, V. Zéninari, D. Courtois, Journal of Quantitative Spectroscopy and Radiative Transfer, 54, 6, pp. 1009-1018 (1995) https://doi.org/10.1016/0022-4073(95)00124-4