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A rovibrational model based on the normal-mode complete nuclear Hamiltonian is applied to
methane using our recent potential energy surface [A. V. Nikitin, M. Rey, and Vl. G. Tyuterev,
Chem. Phys. Lett. 501, 179 (2011)]. The kinetic energy operator and the potential energy func-
tion are expanded in power series to which a new truncation-reduction technique is applied. The
vibration-rotation Hamiltonian is transformed systematically to a full symmetrized form using irre-
ducible tensor operators. Each term of the Hamiltonian expansion can be thus cast in the tensor form
whatever the order of the development. This allows to take full advantage of the symmetry proper-
ties for doubly and triply degenerate vibrations and vibration-rotation states. We apply this model to
variational computations of energy levels for 12CH4, 13CH4, and 12CD4. © 2012 American Institute
of Physics. [http://dx.doi.org/10.1063/1.4730030]

I. INTRODUCTION

An accurate computation and modeling of molecular
rovibrational states of medium-sized molecules is still, even
nowadays, an extremely challenging issue. In particular, the
resolution of the complete nuclear Schrödinger equation for
variationally fully converged energy levels up to highly ex-
cited vibrational states is very demanding. This is essentially
due to high dimensionalities of the full vibration-rotation
models including all degrees of freedom for the nuclear
motion that require a development of efficient optimization
methods as the number of atoms increases, especially when
N ≥ 5. Several authors have investigated the convergence for
many hundreds or thousands of (ro)vibrational levels using
various methods of global calculations and potential energy
surfaces (PES) for small or medium-sized molecules.1–12

This implies using appropriately defined sets of coordinates
to describe PESs and writing the kinetic energy terms to
perform variational or perturbative calculations. In this vein,
it has been recognized for many years that the sets of coor-
dinates can be described either by curvilinear (bond-length,
bond-angles, Jacobi, Radau, or hyperspherical)1, 13–16 or
rectilinear, normal coordinates.17 Each of them possess their
advantages and disadvantages for practical applications. The
exact Hamiltonian written in terms of rectilinear, normal
coordinates has been derived by Wilson and Howard,18

Darling and Dennison,19 and simplified by Watson20 that
provides a rather general framework for describing rotation-
vibration spectra of arbitrary N-atomic nonlinear semirigid
molecular systems. There exists several computer programs
(MULTIMODE, CONVIV, etc.) (Refs. 21–26) to solve the
molecular stationary Schrödinger equation associated with
this coordinate system. These codes are based on perturbation
or variational theories using vibrational self-consistent field

a)Electronic mail: michael.rey@univ-reims.fr.

(VSCF), mean field configuration interaction (VMFCI),
or Lanczos methods. Alternative techniques use contact
transformations (CT) in normal coordinates.27–29

The curvilinear coordinates are usually considered as bet-
ter suitable to describe the nuclear motions over a wide range
of geometries but imply a treatment of complicated expres-
sions of the kinetic energy operators as the number of atoms
increases.14, 30–35 There is a lot of works devoted to the calcu-
lation of vibrational energy levels using curvilinear internal
coordinates.6, 36–38 For systems with four or more atoms,
Wang and Carrington used contracted basis functions com-
bined with a Lanczos eigensolver for computing vibrational
spectra.39, 40 Among the most challenging issues the global
and accurate modeling of the vibrational overtone energy
levels of methane remains very important for various appli-
cations. Much progress has been achieved these last years in
the construction of reliable PESs for CH4.37, 41–44 Marquardt
and Quack42, 43 have computed a global PES for methane and
have determined its analytical representation by adjustments
to an ab initio data set under special consideration of addi-
tional experimental constraints. This PES has been applied to
the calculations of vibrational levels in deuterated methane
isotopologues.43 Schwenke and Partridge37, 44 have reported
sophisticated ab initio calculations enabling accurate predic-
tions of the lowest lying vibrational levels of CH4. Nikitin
et al. have extended vibrational methane predictions using
nonlinear internal coordinates from their PES, hereafter re-
ferred to as NRT PES.45 In this work we focus on the develop-
ment of irreducible tensor operator (ITO) formalism46, 47, 49, 50

for the normal-mode vibrational-rotational Hamiltonian with
a most complete account of symmetry properties for spherical
top molecules (Td, Oh point groups).

The detailed line-by-line analysis of high resolution
experimental data of methane for excited vibrational polyads
still remains a problem to be solved but is a requisite for
numerous fields of science. For analyzing high-resolution
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spectra, the empirical effective polyad models proved to be
efficient for the spectroscopic data reduction and gave rise
to databases such as HITRAN,51 TDS,52 STDS,53 etc., with
applications to atmospheric physics or planetology (Giant
planets or Titan atmospheres). Methane acts as a greenhouse
gas in the earth atmosphere, knowledge of its absorp-
tion/emission is also important for astrophysical applications,
in particular, for the modeling of brawn dwarfs. Concerning
the theoretical aspect, its high symmetry requires the use of
sophisticated group theory tools and adapted computer codes.
Mathematically speaking the ITO formalism allows a full
account of molecular symmetry properties and is employed
to describe—in a systematic way—anharmonicities as well as
various vibration-rotation interactions as strong Fermi-type
resonances between stretching and bending modes or Coriolis
couplings. For this reason, advanced analyses of vibration-
rotation spectra of spherical54–56, 59 and symmetric-top60–64

molecules employ empirical models based on this approach
for many years. However, these effective empirical models
fail to describe reliably resonances for high polyads because
of the lack of experimental informations for “dark states.”

Reliable predictions from molecular PESs would thus
help resolving many issues related to the complete charac-
terization of these unobserved dark states.

In this study, for the first time, the ITO normal-mode for-
malism is combined with molecular PESs for direct calcu-
lations of rovibrational methane states. The major aim of this
work is to extend the empirical effective spectroscopic models
to the complete normal-mode nuclear Hamiltonian using the
ITO approach. To achieve this end, we generalize our previous
work on symmetric top molecules65 to systems where triply
degenerate vibrational modes are involved. Convergence of
basis set and of Hamiltonian expansion is discussed. The for-
malism is validated by calculations on methane isotopologues
(12CH4, 13CH4, and 12CD4) using NRT PES and comparisons
with original variational calculations45 in curvilinear internal
coordinates.

II. QUANTUM MECHANICAL MODEL

A. Coordinate system

The choice of an optimal set of coordinates allowing
the maximum separation of the individual motions in the
molecule is of major importance for deriving quantum
kinetic energy operators. To achieve this end, the space-fixed
Cartesian coordinates Xi = (Xi, Yi, Zi) are transformed to
describe internal motions of the molecule composed of N
nuclei of mass mi. First, a set of Cartesian coordinates xi

= (xi, yi, zi) in the molecular fixed frame is defined as

Xi − X(0)
cm = S−1(θ, φ, χ )xi , (i = 1 . . . N) , (1)

where X(0)
cm stand for the three coordinates of the center-of-

mass, S−1(θ , φ, χ ) is an orthogonal 3 × 3 matrix relating
the spatial orientation of the molecular fixed frame x, y, z
to the laboratory-fixed frame X, Y, Z, and (θ , φ, χ ) are the
Euler angles. In the usual treatment of molecular vibrations
it is customary to introduce (3N − 6) internal displacement
coordinates Ri defined as components of the vector R = (r1,

r2, . . . ; θ1, θ2, . . . ) related to (3N) Cartesian displacement di.
In general, the relation between Ri and di are nonlinear. By a
linearization of these relations, one can define the rectilinear
part [R]rect of R through the equation [R]rect = Bvd, where
Bv is a constant matrix.66–68 The 6 remaining equations
are constrained according to the Eckart conditions69 to
preserve the same number of independent variables. Note that
these conditions ensure that the molecular frame is properly
locked with the molecule; the Eckart axes being chosen such
that they coincide with the principle axes of inertia in the
equilibrium configuration. For semirigid molecules with a
well-defined equilibrium configuration the molecular vibra-
tions are generally described by means of a set of (3N − 6)
nonredundant, rectilinear mass-weighted normal coordinates
Qk ∈ (− ∞, +∞) which are related to di as17, 66–68

diα =
3N−6∑
k=1

m
−1/2
i liα,kQk (α = x, y, z; i = 1 . . . N).

(2)
For the XY4 molecules (N = 5), we adopted the standard
conventions about the orientation of the molecular fixed
frame: at the equilibrium configuration the numbering of
the atoms in the tetrahedron and their Cartesian coordinates
ai = (xi, yi, zi) are defined as follows Y(1) = (a, a, a), Y(2)
= (−a, −a, a), Y(3) = (a, −a, −a), Y(4) = (−a, −a, −a),
X(5) = (0, 0, 0) with a = re/

√
3.

The coordinate system is generally chosen to take full
advantage of the symmetry. It is thus convenient to construct
curvilinear symmetry-adapted coordinates S

(�)
kσ with respect

to the molecular point group as linear combination of the in-
ternal coordinates Ri. We denote by U the group symmetry
transformation and we thus write

S(�) = UR. (3)

Methane-type XY4 molecules belong to the Td point group
and possess nine vibrational degrees of freedom divided into
four modes. There is one non-degenerate mode (ν1), one dou-
bly degenerate mode (ν2), and two triply degenerate modes
(ν3, ν4) labeled using the irreducible representations (irreps)
� of Td, namely, A1, E, and F2, respectively. Consequently
the normal coordinates Q also transform according to the ir-
reps of Td and in the rectilinear approximation are related to
the symmetry coordinates as

[S(�)]rect = LQ(�) , (4)

with � = A1, E, and F2. Here L is the matrix composed of the
eigenvectors of the GF matrix in the conventional approach
introduced by Wilson et al.17 In vibrational spectroscopy, it
is often convenient to write the Hamiltonian in wavenumber
units by introducing the harmonic frequencies ωk and by re-
placing the normal coordinates Q

(�)
kσ by their dimensionless

equivalents q
(�)
kσ

ωkσ = 1

2πc
(λ(�)

kσ )
1/2

, q
(�)
kσ =

(
λ

(�)
k

¯2

)1/4

Q
(�)
kσ , (5)

where λ
(�)
kσ are the eigenvalues of the GF matrix.17 Since the

harmonic frequencies (ω2a, ω2b), (ω3x, ω3y, ω3z), and (ω4x,
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ω4y, ω4z) are associated with doubly and two triply degenerate
vibrations they will be simply denoted by ω2, ω3, and ω4.

The initial PES is expressed in terms of curvilinear in-
ternal coordinates adapted to the symmetry of the molecule.
In this work, the symmetrized curvilinear internal coordinates
are defined as a linear combination of the Morse-cosines-type
functions in the following manner:

S
(A1)
1 = (y1 + y2 + y3 + y4)/2,

S
(E)
2a = (2C12 − C13 − C14 + 2C34 − C23 − C24)/

√
12,

S
(E)
2b = (C13 − C14 + C24 − C23)/2,

S
(F2)
3x = (y1 − y2 + y3 − y4)/2,

S
(F2)
3y = (y1 − y2 − y3 + y4)/2,

S
(F2)
3z = (y1 + y2 − y3 − y4)/2,

S
(F2)
4x = (C24 − C13)

√
2,

S
(F2)
4y = (C23 − C14)

√
2,

S
(F2)
4z = (C34 − C12)

√
2,

(6)

with yi = 1 − exp([− 1.9(ri − re)] and Cij = cos(θ ij)
− cos(θ e), where cos(θ e) = −1/3. The equilibrium length
re is set to the optimized value accounting for best ab initio
estimations,45 in case of methane re = 1.08601 Å.

An appropriate analytical representation for the PES
has to be conveniently chosen to describe the nine de-
grees of freedom of the CH4 molecule. The NRT PES was
built as a combination of the symmetrized powers of the
{S(A1)

1 , S
(E)
2σ , S

(F2)
3σ ′ , S

(F2)
4σ ′′ } curvilinear coordinates (6) as

V (R) =
∑
{p}

Fp

∏
iσ

(
S

(�i )
iσ

)piσ

, (7)

where the indices σ , σ ′, and σ ′′ stand for components of de-
generate vibrations. This can be expressed through a tenso-
rial coupling scheme according to the algorithm proposed in
Ref. 50. The following tensorial form for the PES expansion45

is used here:

V (R) =
∑
{r}

F′
r
(([

S
(A1)
1

]r1 ⊗ [
S

(E)
2

]r2
)(C)

⊗ ([
S

(F2)
3

]r3 ⊗ [
S

(F2)
4

]r4
)(C))(A1)

, (8)

where p = {p1, p2a, p2b, p3x, p3y, p3z, p4x, p4y, p4z},
r = {r1, r2, r3, r4}, and the sets Fp, F′

r are force constants.
The component-by-component PES expansion (7) contains
1118 inter-related parameters F up to 8th order expansion
while its tensor form (8) contains 330 parameters F′ given
in supplementary materials of Ref. 45. This clearly indicates
the advantage of using the full symmetry properties. The set
of curvilinear coordinates for XY4-type molecules consists of
four bond-lengths ri ≡ rX−Yi

and six angles θij ≡ θYi−X−Yj

= arccos ( 	ri . 	rj

ri rj
) describing the nine vibrational degrees of

freedom. Thus there exists a redundancy between these co-
ordinates due to the fact that not all the six valence angles are
independent which results in a nonlinear redundancy relation
�(R) = 0. The redundancy issues are discussed, for example,
in Refs. 70–72.

In this study we use rectilinear normal coordinates qi de-
fined by Eqs. (2), (4), and (5). In order to express curvilin-
ear coordinates (6) in terms of nonlinear functions of qi, we
employed the techniques described in our previous work for
symmetric top molecules65 easily adapted to our case. An al-
ternative technique of internal-to-normal coordinates has been
outlined in Ref. 67. Assuming nuclear motions confined to
the neighborhood of the equilibrium configuration and fol-
lowing the well-established procedure of a PES expansion in
terms of dimensionless normal coordinates, we can write (in
wavenumber units)

U (q)

hc
= 1

2

∑
iσ

ωiq
2(�)
i σ + 1

6

∑
iσjσ ′kσ ′′

φσσ ′σ ′′
ijk q

(�)
iσ q

(�′)
jσ ′ q

(�′′)
kσ ′′

+ · · · . (9)

By symmetry consideration the anharmonicity normal-mode
parameters φij...k do not vanish if �(qi) × �(qj) × · · ·
× �(qk) ⊃ A1.

B. Rovibrational normal-mode Hamiltonian in
the ITO formalism

The complete vibration-rotation Hamiltonian for a poly-
atomic molecule in normal coordinates was formulated in its
most compact form by Watson.20 In terms of dimensionless
normal coordinates and in wavenumber units (H ⇐ H/hc) it
is given by

H = 1

2

∑
kσ

ωkp
2(�)
kσ + 1

2

∑
αβ

(Jα − πα)μαβ(Jβ − πβ)

+U (q) + UW, (10)

where α = x, y, z. Jα ⇐ Jα/¯ and πα ⇐ πα/¯ are dimen-
sionless molecular frame components of the total and vibra-
tional angular momentum, respectively, and μ is the recipro-
cal inertia tensor. U(q) is the potential function (9) and UW

= −1/8
∑

α μαα is a small mass-dependent contribution in-
troduced by Watson20 which is a purely quantum mechanical
term of kinetic origin. The parameters ωk, μαβ , φσσ ′σ ′′

ijk , etc.
are all expressed in cm−1. The first term of the Hamiltonian is
the vibrational kinetic energy operator while the second term
describes the rotational kinetic energy including vibration-
rotation couplings. For semirigid molecules, μαβ can also be
expanded in convergent Taylor series in normal coordinates
using the matrix algorithm described by Watson.20 For spher-
ical top molecules, the principal equilibrium moments of in-
ertia are equal and the reciprocal inertia tensor reads

μ = I−1
0

(
I3 + I−1

0

∑
iσ

Aiσ qiσ

)−2

,

I0 = 2
∑

i

mia
i
αai

α, α = x, y, z, i = 1, . . . , N = 5,

(11)

where the ai
α’s are the Cartesian coordinates at the equilibrium

configuration (see below Eq. (2)) and Aiσ is given in Ref. 73.
The equilibrium rotational constant Be for XY4 molecules in
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TABLE I. Coriolis coupling parameters ζ α
kσ,lσ ′ for 12CH4, 13CH4, and

12CD4 from the PES.45

ζ α
kσ,lσ ′ 12CH4

13CH4
12CD4

ζ x
2a,3x = −ζ

y

2a,3y −0.68911 −0.69266 −0.64504

ζ x
2a,4x = −ζ

y

2a,4y −0.52452 −0.51983 −0.57786

ζ x
2b,3x = −ζ

y

2b,3y −0.39786 −0.39991 −0.37242

ζ x
2b,4x = −ζ

y

2b,4y −0.30283 −0.30012 −0.33363

ζ z
2b,3z 0.79572 0.79981 0.74483

ζ z
2b,4z 0.60566 0.60024 0.66725

ζ x
3y,3z = −ζ

y

3x,3z = ζ z
3x,3y 0.50236 0.40442 0.16784

ζ x
4y,4z = −ζ

y

4x,4z = ζ z
4x,4y 0.44976 0.45956 0.33216

ζ x
ky,lz = −ζ

y

kx,lz = ζ z
kx,ly −0.72291 −0.72013 −0.74547

k, l = 3, 4, k �= l

wavenumber units takes the value

Be(≡ μe
αα/2) = 6.321611

mY r2
e

. (12)

For example, we have Be = 5.318311 cm−1 for 12CH4 and
13CH4 and Be = 2.661200 cm−1 for 12CD4 in the Born-
Oppenheimer approximation using the equilibrium configu-
ration of Ref. 45.

When considering highly symmetric molecules the use
of group theoretical methods and irreducible tensor operators
adapted to the symmetry of the molecule turns out inherently
advantageous to (i) describe degenerate vibrations and (ii) al-
low a systematic expansion of all possible intra-polyad and
inter-polyad coupling terms. The irreducible tensor operators
automatically account for all symmetry induced relations be-
tween degenerate components of the conventional approach.
As a simple illustration, let us consider the Cartesian compo-
nents (α = x, y, z) of the vibrational angular momentum in the
molecular fixed frame

πα =
∑
kσ lσ ′

ζ α
kσ,lσ ′

(
ωl

ωk

)1/2

q
(�)
kσ p

(�′)
lσ ′ , (13)

where the ζ ’s are the Coriolis coupling constants of normal
modes defined via the l matrix67 of Eq. (2). The ζ values are
given in Table I for methane isotopologues. The axial vec-
tor π transforms according to the D(1τ ) irreps (τ = g) of the
full rotation group O(3) isomorphic to SO(3) ⊗ CI and spans
F1 symmetry in the Td point group. Here τ = g, u stands for
the parity index and labels the irreps of the inversion group
CI. All operators are thus conveniently symmetrized in the
O(3) ⊃ Td group chain. Similarly the total angular momen-
tum J also transforms according to the F1 irreps of Td, that is
Jα ≡ J

(1g,F1)
α . Accordingly one can rewrite Eq. (13) in tensor

notation in a more compact form—where summations over
components are hidden in the tensor product—as

π (F1)
α =

∑
kl

ξα
k,l

(
ωl

ωk

)1/2 (
q

(�)
k ⊗ p

(�′)
l

)(F1)

α
, (14)

the ξ ’s being defined as tensor Coriolis coupling constants.
For a given set (σ , σ ′, α) these latter ones are related to the

ζ ’s according to the formula:

ξα
k,l = ζ α

kσ,lσ ′

√
3F

(
� �′ F1

σ σ ′ α

) , (15)

where the F’s are the Clebsh-Gordan (CG) coupling coeffi-
cients of Td point group. The only non-vanishing ζ α

kσ,lσ ′ co-
efficients are those for which the selection rules of the CG
coefficients are satisfied. For example the non-vanishing con-
dition for the Coriolis terms HCor = −2

∑
α BeπαJα + · · · in

Eq. (10) reads �(qk) × �(pl) ⊃ �(Jα). We clearly see from
Eq. (14) that the product of two modes must span the F1 rep-
resentation that implies that the ν1 mode will not be coupled
by Coriolis interactions with other modes. If the doubly de-
generate mode is not involved, then the interactions terms and
the symmetry labeling can be studied in the full rotation group
according to the natural branching rule D(1u) → F2 for the ν3

and ν4 modes. In that case, the Coriolis coupling terms evalu-
ated at the equilibrium geometry can be cast into the following
form:

HCor ∼ 2
√

3Be(π (1g) ⊗ J (1g ))
(0g,A1)

, (16)

where the three components (m = 0, ±1) of the first-rank π

tensor are given by

π
(1g)
m =

∑
kl

ξ
(m)
k,l

(
ωl

ωk

)1/2(
q

(1u)
k ⊗ p

(1u)
l

)(1g )
m

. (17)

By considering the appropriate orientation, we can relate them
with Cartesian components

π (F1)
x = − 1√

2

(
π

(1g )
1 − π

(1g)
−1

)
,

π (F1)
y = − i√

2

(
π

(1g )
1 + π

(1g)
−1

)
,

π (F1)
z = π

(1g )
0 .

(18)

Expanding these latter relations in both sides of equations and
using Eqs. (14) and (17) we can deduce that

ξ
(±1)
k,l = ±iξ

(x)
k,l = ∓iξ

(y)
k,l , ξ

(0)
k,l = −i

√
2ξ

(z)
k,l . (19)

Note that in general case where all modes are involved,
all the couplings are arranged in Td point group. The reason
is that there is no irrep of the O(3) rotation group which sub-
duces to an E type one. A way to overcome this will be the use
of the u(2) formalism which has been considered for twofold
oscillators and doublet electronic states.74

It is thus a priori possible to express individually by
“hand” each term of the Hamiltonian in a tensor form
which—nevertheless—remains a tedious and tricky task. This
work aims at providing a systematic and unified procedure
to derive the complete nuclear Hamiltonian (10) in terms of
ITOs. To achieve this end and following Ref. 65 the first step
will consist in transforming the normal-mode Hamiltonian us-
ing creation and annihilation operators. These latter ones ap-
pear to be more convenient to handle complicated algebraic
expressions as well as to compute matrix elements. The selec-
tion rules are thus directly deduced from the second quantized
form. This procedure bas been already described elsewhere in
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details for symmetric top molecules (see Ref. 65). We expand
Eq. (10) as

H (a+, a, Jα) =
∑

all indices

h
nα,nβ

m,n
εVm,n (Jα)nα (Jβ)nβ , (20)

where the following vibrational representation is employed:

εVm,n = 1

2

(∏
kσ

(
a

+(�)
kσ

)mkσ (
a

(�)
kσ

)nkσ

+ ε
∏
kσ

(
a

+(�)
kσ

)nkσ (
a

(�)
kσ

)mkσ

)
. (21)

Here the ε index stands for hermiticity (+) or anti-hermiticity
(−) and nα + nβ ≤ 2. In order to fully take advantage of the
molecular symmetry, we want to express the Hamiltonian (20)
in a systematic way in terms of rotation-vibration ITO. As was
argued in Ref. 65 in the case of symmetric tops, the choice
of the formalism proposed by Nikitin et al.50 is very rele-
vant to systematically express the Hamiltonian at arbitrary or-
der of the development. For the vibrational part, symmetrized
powers of creation and annihilation operators are built with
specific formulations adapted to non-degenerate, twofold or
threefold vibrations. The symmetrized powers are obtained as

A+(l,A1) = N (a+(A1))
l

(A1 modes),

A+(lm,�)
σ = N

∑
α

(lm)G�
ασ b+l

1 b+m
2 (E modes),

A+(lmn,k�)
σ = N

∑
α

(lmn)Gk�
ασ a+l

x a+m
y a+n

z (F2 modes),

(22)
where for E-type modes, the two linear combinations
b1 = (a1 + ia2)/

√
2 and b2 = (a1 − ia2)/

√
2 are introduced.

N is a normalization factor, α stands for all rearrangements
of (lmn) and G is a unitary transformation50 allowing the
orientation into Td. The multiplicity k index is used to
distinguish tensors of the same irreducible representation �.
The annihilation part is obtained in a similar manner and
the creation-annihilation couplings are defined in the abbre-
viated notations as L(A1)

1 = (A+(l′1,A1) ⊗ A(l1,A1))(A1) for the
non-degenerate mode, L(�2)

2σ2
= (A+(l′2m

′
2,�

′
2) ⊗ A(l2m2,�2))(�2)

σ2

for the twofold degenerate mode and L(�i )
iσi

= (A+(l′im
′
in

′
i ,k

′
i�

′
i )

⊗ A(limini ,ki�i ))(�i )
σi

(i = 3, 4) for the threefold degener-
ate modes. Thus, the resulting four-mode coupling for
methane-type XY4 molecules is given by

V
(k′�′,k�)�2�3�4�34( �v )
{l′m′n′}{lmn}σv

= ((
L(A1)

1 ⊗ L(�2)
2

)(�2)

⊗ (
L(�3)

3 ⊗ L(�4)
4

)(�34))(�v )

σv
, (23)

where {lmn}\(k�) = (l1)(l2m2)(l3m3n3)(l4m4n4)\(A1)(�2)
(k3�3)(k4�4). The degrees in creation (respectively, annihila-
tion) operators for each mode are given by N ′

i = l′i + m′
i + n′

i

(respectively, Ni = li + mi + ni) and characterize the vibra-
tional operators. For the sake of simplicity, the set (limini)
will be omitted if Ni are equal to zero and denoted as (lmn)i

otherwise. Only labels which are different from zero inside
a subset are kept in the simplified notation. Following this,
we write, for example, the set {lmn} = (0)(00)(100)(210)

simply as (1)3(21)4. Similarly, we denote (k′
i�

′
i , ki�i) as

(k′�′, k�)i and we omit this factor if N ′
i = Ni = 0. Though

this tensorial form seems somewhat unwieldy a considerable
simplification can be achieved since generally many Ni and
N ′

i are equal to zero.
Finally, omitting all intermediate indices, hermitian or

anti-hermitian vibrational operators may be constructed in
concise notations as

ε
V

(�v )
σv

= eiφV (�v )
σv

, (24)

for diagonal operators, that is when all (N ′
i , k

′
i�

′
i) and

(Ni, ki�i) labels are equal and

ε
V

(�v )
σv

= eiφ
(
V (�v )

σv
+ ε

(
V (�v )

σv

)+)
, (25)

otherwise. Here ε denotes the parity of the operator. The phase
factor eiφ depends on the parity and is set to eiφ = i for odd
operators (ε = −) and to 1 otherwise (ε = +). We give in
Table II the correspondences between tensor and component-
by-component formulations for selected vibrational opera-
tors. In the simplified notations of Table II and in the exam-
ples which follow, the multiplicity indices are omitted as they
appear only for higher order terms.

Concerning the rotational part, the operators R�(K)
m of

degree � in Jα and of rank K in O(3) are built recursively
from successive couplings of the elementary tensor R1(1)

= 2J following the method proposed by Moret-Bailly and
Zhilinskii.75, 76 Thus, symmetry-adapted tensor operators in
O(3) ⊃ Td are obtained through a unitary transformation
R�(K,nC)

α = ∑
m

(K)
G

m
nCα R�(K)

m , where the G matrix ele-
ments can be found in Ref. 78 and n a multiplicity index. The
same transformation is used to construct symmetrized angular
momentum functions. The Hamiltonian being hermitian and
invariant under time-reversal, the operators V and R have
necessarily the same parity in elementary operators that is
ε = (−1)� in (24). For our purposes the complete nuclear
Hamiltonian is such that � ≤ 2 and the set of multiplicity
free (n = 1) rotational operators involved in the complete
nuclear Hamiltonian is given by

R2(0,A1) = − 4√
3

(
J 2

x + J 2
y + J 2

z

)
,

R1(1,F1)
α = 2Jα (α = x, y, z),

R2(2,E)
a = 2

√
2√

3

(
2J 2

z − J 2
x − J 2

y

)
,

R
2(2,E)
b = 2

√
2
(
J 2

x − J 2
y

)
,

R2(2,F2)
α = 2

√
2(JβJγ + Jγ Jβ),

(26)

where (α, β, γ ) are circular permutations with the commu-
tation rules [Jx, Jy] = −iJz in the molecular frame.20 Having
defined the vibrational and rotational parts, we can form
rovibrational tensor operators which are totally symmetric
in the molecular point group. The Hamiltonian is built in a
systematic way as a linear combination of such tensors

H (a+, a, Jα) =
∑

all indices

t
�(K,�)
(lmn) β( ε

V
(�) ⊗R�(K,�))

(A1)
,

(27)
where β is a numerical factor initially introduced to set scalar
terms equal in both tensorial and standard notations. This
is essentially the same Hamiltonian as Eq. (20) but written
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TABLE II. Explicit expressions for low-order ITO vibration operators.

ITO form σ Tensor components

+
V

A1A1A1A1(A1)
{(2)1}{(2)1}

1
2 a+2

1 a2
1

+
V

(E,E)2A1A1A1A1(A1)
{(1)2}{(1)2}

1√
2

∑
σ

a+
2σ a2σ

+
V

(F2,F2)iA1A1A1A1(A1)
{(1)i }{(1)i }

1√
3

∑
σ

a+
iσ aiσ (i = 3, 4)

−
V

(E,E)2A2A1A1A1(A2)
{(1)2}{(1)2}

i√
2

(a+
2aa2b − a+

2ba2a)

+
V

(E,E)2EA1A1A1(E)
{(1)2}{(1)2} σ a − 1√

2
(a+

2aa2a − a+
2ba2b)

b 1√
2

(a+
2aa2b + a+

2ba2a)

+
V

(F2,F2)3A1F2A1F2(F2)
{(1)3}{(1)3} σ xa − 1√

2
(a+

3ya3z + a+
3za3y )

+
V

(F2,F2)3A1EA1E(E)
{(1)3}{(1)3} σ a 1√

6
(a+

3xa3x + a+
3ya3y − 2a+

3za3z)

b − 1√
2

(a+
3xa3x − a+

3ya3y )

−
V

(F2,F2)3A1F1A1F1(F1)
{(1)3}{(1)3} σ xa − i√

2
(a+

3ya3z − a+
3za3y )

+
V

(F2,F2)3A1F2A1F2(F2)
{(11)3}{(11)3} σ xa − 1√

2
a+

3xa3x (a+
3ya3z + a+

3za3y )

+
V

(F2,F2)3A1A1A1A1(A1)
{(11)3}{(11)3} σ

1√
3

(a+
3xa3xa+

3ya3y + a+
3xa3xa+

3za3z + a+
3ya3ya+

3za3z)

+
V

(E,E)2A1A1A1A1(A1)
{(21)2}{(21)2} σ

√
2

16

(
(a+3

2a a3
2a + a+3

2b a3
2b + a+

2aa2aa
+2
2b a2

2b + a+2
2a a2

2aa
+
2ba2b)

+(a+3
2a a2aa

+2
2b + a+2

2a a+
2ba

3
2b + h.c.)

)
−
V

(F2,F2)3(A1,F2)4A1F2F2F1(F1)
{(11)3}{(1)3(11)4} σ xa − i√

2
a+

4xa4ya+
3z(a+

3xa+
3za3y − a+

3xa+
3ya3z) + h.c.

−
V

(E,A1)2(A1,F2)4EA1F2F2(F2)
{(1)2}{(1)4} σ x − 1

2 a+
2aa4x +

√
3

2 a+
2ba4x + h.c.

y − 1
2 a+

2aa4y −
√

3
2 a+

2ba4y + h.c.

z a+
2aa4z + h.c.

ay and z components are deduced from the x component by a circular permutation of x, y, z.

in a symmetrized form adapted to the Td point group. As
explained in Ref. 65 for symmetric tops, the t parameters
are related in a systematic way to the h parameters in
Eq. (20) using symbolic Maple computer programs through
a two-step process. This consists in solving recursively a
linear system of equations with t as unknowns. Through this
procedure the non-empirical t parameters are numerically
determined directly from the geometry of the molecule and
from the PES whatever the order the Hamiltonian is. As also
pointed out in Ref. 65, these parameters could be determined
analytically from the spectroscopic constants ω, ζ α

kσ,lσ ′ , Be,

B
αβ

kσ , B
αβ

kσ lσ ′ , . . . with the aid of symbolic calculations. Some
low orders in the ITO vibration-rotation Hamiltonian have
been considered in Ref. 47. Our techniques allow building
the full normal mode ITO model up to any required order.
To illustrate this method we give an example of Coriolis
and centrifugal distortion terms which contain first and
second power of the total angular momentum components.
For an illustration we voluntary limit ourself only to the
leading interaction terms to avoid too extensive expressions.
So the first Coriolis vibration-rotation interaction terms
HCor = −2

∑
α BeπαJα + · · · can be written as

HCor = 6Be√
2

ζ x
3y,3z

( −
V

(F2,F2)3A1F1A1F1(F1)
{(1)3}{(1)3} ⊗R

)(A1)

+ 6Be√
2

ζ x
4y,4z

( −
V

(F2,F2)4A1A1F1F1(F1)
{(1)4}{(1)4} ⊗R

)(A1)

−
√

2ζ x
3z,4y�

+
43

( −
V

(F2,A1)3(A1,F2)4A1F2F2F1(F1)
{(1)3}{(1)4} ⊗R

)(A1)

+
√

2ζ x
3z,4y�

−
43

( −
V

(F2,A1)3(F2,A1)4A1F2F2F1(F1)
{(1)3(1)4}{0} ⊗R

)(A1)

− ζ z
2b,3z�

+
32

( −
V

(E,A1)2(A1,F2)3EF2A1F2(F1)
{(1)2}{(1)3} ⊗R

)(A1)

+ ζ z
2b,3z�

−
32

( −
V

(E,A1)2(F2,A1)3EF2A1F2(F1)
{(1)2(1)3}{0} ⊗R

)(A1)

− ζ z
2b,4z�

+
42

( −
V

(E,A1)2(A1,F2)4EA1F2F2(F1)
{(1)2}{(1)4} ⊗R

)(A1)

+ ζ z
2b,4z�

−
42

( −
V

(E,A1)2(F2,A1)4EA1F2F2(F1)
{(1)2(1)4}{0} ⊗R

)(A1)

+ · · · , (28)

where �ε′
ij = 6Be

8 (
√

ωi/ωj + ε′√ωj/ωi) and R ≡ R1(1,F1).
In a similar fashion the centrifugal distortion part HCent

= ∑
α Be

αJ 2
α + ∑

αβ,kσ B
αβ

kσ q
(�)
kσ JαJβ + · · · can be cast into

the form

HCent = Be

( +
V

A1A1A1A1(A1)
{0}{0} ⊗R2(0,A1))

(A1)

− 3Bzz
1

8
√

6

( +
V

A1A1A1A1(A1)
{(1)1}{0} ⊗R2(0,A1)

)(A1)

− 3B
xy

3z

8

( +
V

(F2,A1)3A1F2A1F2(F2)
{(1)3}{0} ⊗R2(2,F2))(A1)

− 3B
xy

4z

8

( +
V

(F2,A1)4A1A1F2F2(F2)
{(1)4}{0} ⊗R2(2,F2)

)(A1)

− B
yy

2b

4

( +
V

(E,A1)2EA1A1A1(E)
{(1)2}{0} ⊗R2(2,E)

)(A1)

+ · · · . (29)

The efficiency of the method proposed here lies in the
drastic reduction of the number of terms in the Hamiltonian
when using the ITO formalism. This is clearly indicated in
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TABLE III. Reduction of the number of rovibrational terms corresponding to a usual truncation of the Taylor
series Hamiltonian expansion for XY4 molecules when using the ITO formalism. The number of purely vibra-
tional terms is given in the parenthesis. Hpolyad corresponds to a tensor Hamiltonian expansion in the polyad
approximation corresponding to ω1 : ω2 : ω3 : ω4 ≈ 2 : (1 : 1) : (2 : 2 : 2) : (1 : 1 : 1).

Number of HWatson terms Number of Htensor terms Number of Hpolyad ITO
Order Eq. (20) Eq. (27) block-diagonal terms

4 1490 (871) −→ 328 (223) 61 (39)
5 7799 (3904) −→ 1481 (866) 195 (100)
6 35 933 (16 074) −→ 6 252 (3242) 768 (347)
7 142 757 (57 434) −→ 23 548 (10 954) 2510 (971)
8 515 098 (189 855) −→ 81 538 (34 656) 8301 (2859)
9 1 684 813 (572 318) −→ 259 593 (101 835) 24 843 (7534)

10 5 118 269 (1 619 267) −→ 770 354 (281 837) 71 737 (19 562)

Table III where the number of terms increases very rapidly
with the order. The order of the Hamiltonian expansion is de-
fined as m + n where m is the power in the elementary vibra-
tional operators and n is the power of the total angular mo-
mentum operators. The number of invariant tensor operators
can also be calculated by the generating function approach.48

The corresponding Hamiltonian and potential are denoted by
H(m+n) and U(m), respectively. For example, at order 6 there
is six times more terms in the “usual” Watson Hamiltonian
than in the full tensor Hamiltonian. Consequently, the use of
ITOs turns out to be really advantageous for studying high-
symmetric systems such as spherical top molecules. For a
comparison with effective ITO Hamiltonians which are of-
ten used for empirical fits of spectroscopic data, we also give
the number of terms in frame of the polyad approximation in
the last column of Table III. It is clear that the number of vi-
brational H terms in effective models is much smaller, though
additional rotational terms associated with higher Jn powers
(with n > 2) appear. But this approach, based on the pertur-
bation theory, is beyond the scope of the present paper. Our
variational calculations directly account for inter-polyads in-
teractions.

III. ENERGY SPECTRUM CALCULATIONS

As already stated above, all calculations were performed
using the recent NRT potential45 for three Td methane species:
12CH4, 13CH4, and 12CD4. The (ro)vibrational energy lev-
els were computed variationally using the parallelized MIRS

computer package initially designed to effective Hamiltonian
models57 but recently extended to ab initio Hamiltonians in
the normal mode approach.58 Due to the lack of detailed
experimental spectra of methane for higher polyads, purely
empirical models employed during the past decades can-
not properly describe resonance parameters associated with
unobserved dark states. This is true, for example, for the
P = 2(v1 + v3) + v2 + v4 = 4 polyad (called tetradecad)
where analyses59 are not yet completely finished. A way to
get round the problem is the use of PESs with the model (27)
where all resonances are inherently accounted for in a sys-
tematic way. Technically a sophisticated analytical form of
the NRT PES was transformed in rectilinear, normal coordi-
nates, and expanded in 10th order with the atomic masses mH

= 1.007825 u, mD = 2.014108 u and mC13 = 13.003355 u.
As far as the kinetic energy operator is concerned, a detailed
study suggests that for vibrational calculations it is sufficient
to expand the reciprocal inertia tensor at order 6. The maxi-
mum powers of the vibrational expansion in the term π†μπ

are equal to 10. Convergence of the potential U(q) and μ-
tensor will be discussed in more details below.

A. Vibrational basis set

The first step of the calculations concerns a computa-
tion of the J = 0 Hamiltonian eigenvalues. The evaluation of
the vibrational energy levels requires a set a primitive wave-
functions which is arranged according to the same coupling
scheme as for operators (27). Our initial basis set is built as a
tensor product of four harmonic oscillator normal mode func-
tions∣∣((�(A1)

v1
⊗ �(C2)

v2

)(C2) ⊗ (
�(C3)

v3
⊗ �(C4)

v4

)(C34))(Cv)

σv

〉
, (30)

and the matrix elements (ME) are computed by using the
Wigner-Eckart theorem

〈
�

(C ′)
σ ′

∣∣T (C0)
σ0

∣∣�(C)
σ

〉 = F

(
C0 C C ′

σ0 σ σ ′

)
〈C ′||T (C0)||C〉,

(31)
where 〈· · ·||· · ·||· · ·〉 are reduced matrix elements. Note that
all useful expressions concerning tensor and ME calculations
can be found in Ref. 50. It is obvious that the account of
symmetry makes the calculation less demanding for time and
memory: for Td molecules the Hamiltonian matrix is decom-
posed into five sub-blocks A1, A2, E, F1, and F2 of dimensions
NA1 , NA2 , NE, NF1 , and NF2 , respectively.

B. Truncation-reduction scheme

To further reduce the high dimensionality of the 9D vi-
brational problem, one needs an optimal selection of terms
involved in the expansions (27)–(30). In all variational meth-
ods for the nuclear motion of polyatomic molecules, some
compression-truncation techniques of the primitive basis set
are generally applied.6, 39 Otherwise calculations become un-
feasible because of rapidly increasing number of terms.
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FIG. 1. One dimensional cut of the potential expansions U
(6)
red(q), U(10)(q), and U(6)(q) (see Eq. (35)) as a function of q2a (top figure) and q4x (bottom figure).

Here we propose a new strategy of truncation-reduction
technique adapted to our ITO normal mode representation.
This applies simultaneously to the Hamiltonian (27) and to
the basis set (30) expansions. The purpose is to select the
terms in both expansions in a consistent manner that allows
to fully use the advantages of the approach, namely, complete
account of symmetry properties and very fast calculations of
ME via simple analytical relations using (31) without loss of
precision. On the other hand this procedure aims at minimiz-
ing the cost of the calculations and reducing the impacts of
well-known drawbacks of Taylor series expansions at large
distances.

Let us denote F a finite dimension subspace of the full
Hilbert space of vibrational states spanned by a selected set of
normal mode basis functions (30). For a given basis function
(30), every term in our ITO vibrational Hamiltonian model
(21)–(25) generates a limited number of non-vanishing off-
diagonal coupling elements, which is directly related to the
order of the term. This follows immediately from examples
given in Table II and from the well-known relations for the
matrix elements of a+, a operators. It is thus natural to intro-
duce a first cut-off criterium∑

i

vi ≤ vmax, (32)

with vi = 0, . . . , vmax , defining the subspaces F(vmax). The
vmax values will correlate with the maximum order of the
Hamiltonian expansion in Eqs. (21), (25), and (27).

The use of Taylor series normal mode expansion of the
Hamiltonian simplifies ME calculations but induces two spe-
cific issues. In order to converge calculations, one first needs
achieving accurate representation of the kinetic operator and
of PES by a truncated expansion in the range of nuclear con-
figurations R spanned by wavefunctions belonging to F . Our
experience showed that in order to converge calculations of 5
or 6 vibrational quanta to the precision of ∼1 cm−1 one would
need 8th or 10th order of the Hamiltonian expansion.

First, the number of tensor operators involved in the com-
plete nuclear normal-mode Hamiltonian expansion drastically
grows as the order increases (see Table III). This means that
the computation of converged energy levels becomes more
and more intractable for practical applications. Second, a lack
of reliability arises from the incorrect asymptotic behaviour
of a polynomial PES representation. It is well-known that a
truncated Taylor series expansion can produce spurious min-
ima and artificial barriers and can go down more and more
sharply to (−∞) with the increasing order of the polynomial
(Fig. 1). Wavefunctions (30) belonging to F die out expo-
nentially outside R range of nuclear configurations. If these
artifacts are beyond the R range, they do not impact the vi-
bration calculations. In order to converge high-v calculations,
one needs to increase the order of the Hamiltonian and to en-
large the F subspace of basis functions (30). Consequently
the nuclear configuration subspace R should also be enlarged
and basis functions may probe artifacts of a standard Taylor
series truncations. In this case the quality of variational calcu-
lations rapidly deteriorates as the size of the basis increases.
Some questions are raised in Ref. 77 about the descrip-
tion of bound states when non-physical regions occur in the
PES.

To get around these difficulties we have modified the
usual procedure of Taylor series truncation resulting in a
reduction of poorly behaving terms in the Hamiltonian ex-
pansion. This truncation-reduction procedure which has been
successfully applied to tetratomic molecules in Ref. 65, is
threefold. That allows (i) to deal with lower orders and thus
to reduce the number of tensor operators making the Hamil-
tonian matrix sparse, (ii) to describe accurately low-lying
molecular states without almost no loss of precision, and
(iii) to better compute converged energy levels using more
smoothly behaving potential over a wider range of nuclear
configurations.

The key feature of the method is to introduce an addi-
tional intermediate cut-off through a m-criterium for a nth
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order Taylor expansion ( with m ≤ n). For simplicity let us
consider first a 1D Taylor expansion of a PES: U = c2q2

+ c3q3 + · · · cnqn + · · ·. The matrix elements of the nth power
term 〈v | cnq

n |v + �v〉 are separated into two sets: one for
“closed neighbors” (�v ≤ m) and the other one for “far away
partner states” (m < �v ≤ n). The corresponding separation
in the operator form (21)–(27) is achieved via the a+, a repre-
sentation

cnq
n = cn

m∑
i,j=1

bij a
+iaj + cn

n∑
i,j=m+1

bij a
+iaj . (33)

Inclusion of the second set in the model requires increasing
�v and thus the dimension of the F subspace.

Our various numerical tests have shown that this second
set is mostly responsible for artifacts specific to the Taylor
expansion. On the contrary, by keeping the first set one can
improve the accuracy of the model for the coupling among
neighboring vibrational states and for diagonal MEs. An
optimization of the m-cutoff allowed increasing the order
of expansion while the number of Hamiltonian terms was
dramatically reduced and the impacts of Taylor artifacts were
minimized. The same technique applies to the kinetic part.

Schematically the three steps of this truncation-reduction
procedure can be described as follows. The Hamiltonian H(p,
q) is expanded up to a given order, say n and denoted as H(n)(p,
q). Then H(n)(p, q) is converted to second-quantized form (33)
for all normal modes and only lower orders in (a, a+) up to
mth total power are kept. A back-transformation to (p, q) op-
erators results in a reduced truncated expansion denoted as
H

(m)
red (p, q). A part of information on higher order terms of

H(n) is thus accounted for in H
(0)
red , H

(1)
red , . . . , H

(m)
red . This proce-

dure is summarized in the following scheme:

Order n : H (n)(p, q) = T (n)(p, q) + U (n)(q)

Second ↓ quantized form

a+2, a+a, a2︸ ︷︷ ︸
op.commonto

p2,q2,···,prqn−r

; · · · ; a+m, a+m−1a, · · ·︸ ︷︷ ︸
op.commonto

prqm−r ,···,prqn−r︸ ︷︷ ︸
; · · · ; a+n, · · ·︸ ︷︷ ︸

op.commonto
prqn−r

Order n → m : H
(m)
red (p, q) = T

(m)
red (p, q) + U

(m)
red (q).

The reduced mth order is composed by the initial mth
order Taylor expansion corrected by some contributions
�H(n→m)(p, q) arising from the higher order n

H
(m)
red (p, q) = H (m)(p, q) + �H (n→m)(p, q). (34)

For the potential part of the Hamiltonian, these contributions
are written as

U
(m)
red (q) = U (m)(q) + �U (n→m)(q). (35)

Various numerical tests confirmed the efficiency of this
truncation-reduction procedure. Let us take as example a Tay-
lor expansion of the Hamiltonian at the order n = 10 and
reduce it to m = 6. The number of tensor operators in the
full rovibrational expansion is thus reduced from 770 354 to
6252. This makes calculation of matrix elements much faster.
Another advantage is that the reduced potential expansion
U

(6)
red(q) is well-defined over a wider R range than truncated

TABLE IV. rms errors (in cm−1) on the matrix elements between the Taylor
polynomial potentials U (6)(q) and U (10)(q) and the reduced one U

(6)
red(q).

〈v′ | U (10)(q) − U (6)(q) |v〉 〈v′ | U (10)(q) − U
(6)
red(q) |v〉

Basis Diagonal Off diagonal Diagonal Off diagonal

F(3) 2.1 0.3 0 0
F(4) 3.3 0.3 0.1 5 × 10−2

F(5) 4.9 0.2 0.5 8 × 10−2

F(6) 7.0 0.2 1.3 0.1

Taylor expansion U(10)(q) and U(6)(q) as is clearly seen in
Figure 1. Consequently, variational calculations can be con-
verged for higher vibrational excitations without being af-
fected by artifacts of Taylor series.

Finally to evaluate the error introduced in our reduction
procedure, we have computed the ME 〈v′ | X |v〉, where X
= U(6)(q), U(10)(q), and U

(6)
red(q) up to vmax = 3, 4, 5, and

6 in Eq. (30). Assuming the matrix elements of U(10)(q) as
reference values, we give in Table IV the rms deviations for
〈v′ | U (10)(q) − U (6)(q) |v〉 and 〈v′ | U (10)(q) − U

(6)
red(q) |v〉.

In order to avoid possible confusions we stress that the word
“order” is, in our case, not an order of perturbation, but just
the order (≡highest power) of the ITO polynomial. In this
work, we do not use a perturbation theory, our approach
being variational. We use the decoupled normal modes
basis set for the sake of computational efficiency, however
various coupling terms are treated by numerically “exact”
diagonalizations and not as small perturbative corrections.

The conclusion is the following. The cost of variational
computations with U

(6)
red(q) and U(6)(q) is the same. But the

account of corrections �U(10→6)(q) makes the Hamiltonian
model H

(6)
red (p, q) much more accurate than H(6)(p, q).

C. Computational details of variational calculations
and rovibrational basis

As clearly indicated in Fig. 1, the pathological regions
of the 10th order Taylor potential did not disappear in the
reduced U

(6)
red(q) expansion but are pushed away from the

reference geometry. Not surprisingly, variational calculations
could be deteriorated for very high values of vmax . A good
compromise for this work was to used 9 HO functions in each
mode—namely, the F(9) basis—which correspond to sub-
blocks of sizes NA1 = 2358, NA2 = 1770, NE = 4108, NF1

= 5752, and NF2 = 6340. Note that if methane was treated
without symmetry, the size of the unique block to be diagonal-
ized with the F(9) basis would be NA1 + NA2 + 2NE + 3NF1

+ 3NF2 = 48 620.
As mentioned above for the full 10th-order Hamiltonian

H(10)(p, q), it is sufficient to consider the μ-tensor expansion
up to 6th power. The second group of convergence tests
concerns the effect of a truncation of μ-expansion in the
kinetic part of the Hamiltonian on vibration energy levels.
Taking the 6th order μ-tensor expansion as a reference value,
we have computed the vibrational energy levels from this μ6

model and also from models corresponding to lower orders
in μ, using the F(9) basis. The rms errors calculated up to
the tetradecad levels between μ6 and μi (i = 0, 2, 4) models
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are given by: rms(μ6 − μ0) = 0.8 cm−1, rms(μ6 − μ2)
= 1.9 × 10−2 cm−1 and rms(μ6 − μ4) = 4.9 × 10−4 cm−1.
Considering the accuracy of ab initio PESs, these com-
parisons prove that a 2nd order μ-tensor expansion would
be sufficient for vibrational calculations in the considered
energy range. In order to have security margins, we kept the
μ4-expansion in the kinetic model of our calculations.

The timing and storage requirements for J = 0 are as fol-
lows: computation of the matrix elements for the five blocks
using the F(9) basis and for the 6252 operators in the Hamil-
tonian takes few hours on a standard quad core Intel desktop

computer while the diagonalization takes 10 min. The sizes
of the corresponding matrix element and eigenvector files are
700 MB and 600 MB and so are relatively small compared to
those involved in Lanczos-type procedures, for example.

It is instructive to compare our variational normal mode
energy levels to those obtained from the same PES but
using curvilinear coordinates and the exact kinetic energy
operator—without using Taylor series expansions—as pre-
sented in Ref. 45. The convergence of our calculated levels
with respect to the variational calculation in curvilinear
coordinates are given in Table V according to various

TABLE V. Convergence of the Hamiltonian (27) for selected vibrational energy levels of 12CH4 and rms deviations (cm−1) using normal modes with the F(9)
basis and with various truncation schemes.

�E = Ea − E(our)b (cm−1)

Polyad v1v2v3v4 Sym (Mult) E (Ref. 45) (cm−1)a Orders n n → m n n → m

6 8 → 6c 10 10 → 6c

P1 0001 F2 1310.76 − 1.54 0.38 − 0.10 − 0.10

0100 E 1533.33 − 1.13 0.46 − 0.13 − 0.14
P2 0002 A1 2587.12 − 7.00 2.36 − 1.17 − 0.45

0002 F2 2614.24 − 4.86 0.95 − 0.59 − 0.18
0002 E 2624.72 − 3.39 1.20 − 0.37 − 0.29
0101 F2 2830.48 − 4.48 2.22 − 0.81 − 0.49
0101 F1 2846.04 − 3.21 1.22 − 0.37 − 0.27
1000 A1 2916.48 − 1.05 − 0.05 0.08 0.12
0010 F2 3019.50 − 0.77 0.02 0.00 − 0.02
0200 A1 3063.79 − 3.40 1.78 − 0.61 − 0.51
0200 E 3065.17 − 2.70 1.29 − 0.41 − 0.37

P3 0003 F2(1) 3870.76 − 15.88 3.97 − 4.10 − 0.78
0003 A1 3909.18 − 11.66 0.36 − 2.41 0.21
0003 F1 3920.53 − 8.10 1.94 − 0.99 − 0.03
0003 F2(2) 3931.22 − 7.38 2.12 − 1.27 − 0.43
0102 E(1) 4101.78 − 12.85 5.95 − 3.51 − 1.60
0102 F1 4129.00 − 9.88 3.92 − 2.15 − 0.83
0102 A1 4133.38 − 8.92 4.87 − 2.14 − 1.12
0102 F2 4142.93 − 8.30 2.78 − 1.57 − 0.44
0102 E(2) 4151.38 − 6.50 2.83 − 1.07 − 0.52
0102 A2 4161.95 − 5.46 2.33 − 0.72 − 0.38
1001 F2 4223.63 − 4.00 − 0.01 0.16 − 0.05
0011 F2 4319.37 − 3.14 0.14 0.03 − 0.15
0011 F1 4322.66 − 3.43 − 0.33 − 0.57 − 0.94
0011 E 4322.67 − 3.30 − 0.08 − 0.05 − 0.49
0011 A1 4323.03 − 3.08 0.94 − 0.24 − 0.13
0201 F2(1) 4349.13 − 9.28 5.48 − 2.60 − 1.37
0201 F1 4363.83 − 6.74 3.45 − 1.32 − 0.72
0201 F2(2) 4379.08 − 5.87 2.74 − 1.03 − 0.57
1100 E 4435.22 − 2.67 0.39 − 0.07 − 0.20
0110 F1 4537.62 − 2.39 0.39 − 0.15 − 0.36
0110 F2 4543.94 − 2.68 0.65 − 0.28 − 0.44
0300 E 4592.43 − 6.42 3.72 − 1.50 − 0.98
0300 A2 4595.38 − 4.66 2.52 − 0.81 − 0.60
0300 A1 4595.66 − 4.85 2.45 − 0.96 − 0.60

rms (up to P3)d 6.50 2.49 1.40 0.61
rms (up to P4)d 10.90 3.85 3.31 0.84

aVariational calculations with internal non-linear coordinate by Nikitin et al.45 obtained from the same PES without power series expansion and using the exact kinetic operator.
bE(our) are the eigenvalues of the ITO normal-mode Hamiltonian (27) using our variational calculations.
cNotation 8 → 6 (respectively, 10 → 6) corresponds to the truncation-reduction scheme of Sec. III B; this means that the Hamiltonian is expanded up to 8th (respectively, 10) power
in q and converted to 6th power in a+, a.
dRoot-mean-squares for Ea − Eb(our) for energy levels up to the third (P3: octad) and fourth (P4: tetradecad) polyads. The total number of vibrational sublevels is 35 up to P3 and 95
up to P4.
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TABLE VI. Vibrational energy levels up to the tetradecad of 12CH4, 13CH4, and 12CD4 computed variationally with the F(9) basis and using H
(6)
red ITO normal

mode model. E (O–C) = (observed-calculated) and rms deviations are given in cm−1.

12CH4
13CH4

12CD4

v1v2v3v4 Sym E O–C (%) E O–C (%) v1v2v3v4 Sym E O–C (%)

0001 F2 1310.66 0.10 96 1302.69 0.09 96 0001 F2 997.68 0.19 98
0100 E 1533.19 0.14 96 1533.36 0.14 96 0100 E 1091.61 0.04 98
0002 A1 2586.67 0.37 90 2571.77 0.33 90 0002 A1 1965.09 0.10 79
0002 F2 2614.06 0.20 94 2598.46 0.18 94 0002 F2 1990.07 0.40 96
0002 E 2624.43 0.19 98 2608.58 0.16 98 0002 E 1996.49 0.34 98
0101 F2 2829.99 0.33 90 2822.14 0.30 90 0101 F2 2083.23 0.16 94
0101 F1 2845.77 0.30 96 2837.92 0.29 96 0101 F1 2090.61 0.27 98
1000 A1 2916.60 − 0.12 79 2915.55 − 0.11 79 1000 A1 2101.35 0.03 71
0010 F2 3019.52 − 0.03 83 3009.57 0.02 83 0200 A1 2182.11 0.05 96
0200 A1 3063.29 0.36 96 3063.62 0.34 96 0200 E 2182.48 0.10 98
0200 E 3064.80 0.34 96 3065.13 0.33 96 0010 F2 2260.11 − 0.03 88
0003 F2(1) 3869.98 0.51 48 3847.94 48 0003 F2(1) 2942.46 38
0003 A1 3909.40 − 0.20 88 3886.58 88 0003 A1 2976.28 90
0003 F1 3920.50 0.01 92 3897.38 94 0003 F1 2983.40 94
0003 F2(2) 3930.79 0.13 53 3907.41 53 0003 F2(2) 2989.50 48
0102 E(1) 4100.18 1.21 74 4085.38 74 0102 E(1) 3048.81 72
0102 F1 4128.17 0.59 86 4112.61 86 0102 F1 3073.71 90
0102 A1 4132.26 0.60 86 4116.41 86 0102 A1 3077.22 92
0102 F2 4142.49 0.37 90 4127.03 92 0102 F2 3079.90 92
0102 E(2) 4150.86 0.35 83 4135.24 83 0102 E(2) 3084.42 92
0102 A2 4161.58 0.26 98 4145.79 98 0102 A2 3090.74 98
1001 F2 4223.58 − 0.12 77 4213.92 77 1001 F2 3103.56 66
0011 F2 4319.23 − 0.02 83 4301.32 83 0201 F2(1) 3168.06 46
0011 F1 4321.72 0.87 81 4304.17 81 0201 F1 3175.33 94
0011 E 4322.18 0.00 81 4304.33 81 0201 F2(2) 3182.58 49
0011 A1 4322.90 − 0.20 76 4305.04 76 1100 E 3186.02 71
0201 F2(1) 4347.76 0.96 44 4339.98 44 0011 E 3250.83 88
0201 F1 4363.11 0.50 90 4355.39 90 0011 F2 3252.69 88
0201 F2(2) 4378.51 0.44 49 4370.77 49 0011 F1 3253.11 86
1100 E 4435.02 0.10 77 4434.06 79 0011 A1 3254.13 83
0110 F1 4537.26 0.29 83 4527.61 83 0300 E 3271.76 96
0110 F2 4543.50 0.26 77 4533.79 77 0300 A2 3272.59 98
0300 E 4591.45 0.58 94 4591.95 94 0300 A1 3272.72 98
0300 A2 4594.78 0.49 96 4595.27 96 0110 F1 3343.15 88
0300 A1 4595.06 0.45 96 4595.55 96 0110 F2 3346.16 85
0004 A1(1) 5122.20 − 0.86 40 5093.73 41 1002 A1 3895.31 31
0004 F2(1) 5144.11 − 0.87 59 5115.22 61 0004 F2(1) 3914.10 53
0004 E(1) 5167.49 − 0.33 56 5138.15 56 0004 E(1) 3928.01 49
0004 F2(2) 5212.46 − 1.17 66 5182.43 66 0004 F2(2) 3966.01 69
0004 E(2) 5229.72 − 0.81 61 5199.21 61 0004 E(2) 3976.60 67
0004 F1 5231.61 − 0.83 90 5200.99 90 0004 F1 3978.63 92
0004 A1(2) 5241.18 − 1.20 52 5210.35 52 0004 A1 3983.71 49
0103 F2(1) 5370.03 0.49 45 5348.13 45 0103 F2(1) 4019.23 40
0103 F1(1) 5389.23 0.44 55 5367.24 55 0103 F1(1) 4029.11 45
0103 E 5425.05 − 0.39 79 5402.31 79 0103 E 4060.63 83
0103 F2(2) 5429.84 − 0.26 40 5406.47 38 0103 F2(2) 4065.73 58
0103 F1(2) 5437.65 − 0.86 74 5414.62 74 1002 A1 4066.51 29
0103 F2(3) 5444.91 0.21 42 5421.93 44 0103 F1(2) 4067.76 79
0103 F1(3) 5463.18 − 0.26 59 5439.92 59 0103 F2(3) 4071.94 38
1002 A1 5494.09 61 5477.30 62 0103 F1(3) 4080.94 48
1002 F2 5522.63 74 5504.81 74 1002 F2 4097.94 62
1002 E 5533.83 74 5515.69 76 1002 E 4106.34 62
0012 F2(1) 5588.91 − 0.88 72 5564.34 74 0202 A1(1) 4130.00 62
0012 A1 5604.80 40 5583.77 64 0202 E(1) 4132.37 66
0202 A1(1) 5612.58 56 5590.70 74 0202 F2(1) 4156.93 44
0202 E(1) 5613.02 52 5590.88 71 0202 E(2) 4162.59 46
0012 F1(1) 5615.95 76 5591.98 69 0202 F1 4162.98 86
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TABLE VI. (Continued.)

12CH4
13CH4

12CD4

v1v2v3v4 Sym E O–C (%) E O–C (%) v1v2v3v4 Sym E O–C (%)

0012 F2(2) 5616.09 71 5593.94 50 0202 F2(2) 4168.12 41
0012 E 5619.12 64 5599.41 55 0202 A2 4168.72 92
0012 F1(2) 5626.17 74 5600.47 72 0202 A1(2) 4173.48 81
0012 F2(3) 5627.34 74 5601.94 76 0202 E(3) 4180.76 49
0202 F2(1) 5641.81 1.64 38 5626.15 40 1101 F2 4182.50 58
0202 E(2) 5653.48 0.65 46 5637.88 46 2000 A1 4190.62 42
0202 F1 5655.39 − 0.51 83 5639.90 83 1101 F1 4190.73 64
0202 A2 5663.59 0.29 85 5647.96 85 0012 F2(1) 4212.82 66
0202 F2(2) 5668.55 0.05 44 5653.28 44 0012 F1(1) 4238.68 88
0202 A1(2) 5681.65 2.76 69 5666.27 69 0012 A1 4239.47 77
0202 E(3) 5691.20 0.28 50 5675.57 50 0012 F2(2) 4239.82 72
1101 F2 5727.41 69 5717.72 71 0012 E 4241.61 81
1101 F1 5745.21 76 5735.52 77 0012 F2(3) 4246.05 77
2000 A1 5791.62 − 1.37 44 5785.83 40 0012 F1(2) 4246.99 85
0111 F2(1) 5824.14 − 1.04 30 5806.70 31 0301 F2(1) 4252.25 64
0111 F1(1) 5825.50 56 5807.82 58 0301 F1(1) 4259.43 67
0111 E(1) 5832.01 40 5814.59 38 0301 F2(2) 4266.66 72
0111 A1 5834.92 59 5819.29 58 1200 A1 4269.92 66
0111 E(2) 5842.58 79 5825.30 79 1200 E 4270.25 69
0111 A2 5842.75 45 5825.24 45 0301 F1(2) 4273.66 71
0111 F2(2) 5844.21 − 0.21 49 5826.76 50 1010 F2 4329.69 22
0111 F1(2) 5847.30 52 5829.59 52 0111 F1(1) 4330.34 53
1010 F2 5860.85 32 5849.83 32 0111 E(1) 4331.34 62
0301 F2(1) 5867.01 0.65 27 5857.51 48 0111 A1 4332.30 76
0301 F1(1) 5879.03 − 0.01 61 5871.41 61 0111 F2(1) 4333.25 32
0301 F2(2) 5894.19 − 0.07 69 5886.57 69 0111 A2 4335.29 88
0301 F1(2) 5909.01 0.70 69 5901.38 69 0111 E(2) 4337.64 62
0020 A1 5939.74 48 5930.38 36 0111 F2(2) 4339.54 55
1200 E 5952.53 − 0.09 77 5951.66 79 0111 F1(2) 4340.47 50
1200 A1 5968.64 36 5960.31 49 0400 A1 4360.13 94
0020 F2 6004.92 − 0.23 55 5987.34 55 0400 E(1) 4360.73 94
0020 E 6044.14 − 0.27 72 6024.07 72 0400 E(2) 4362.32 96
0210 F2(1) 6054.59 0.05 40 6044.90 42 0210 F2(1) 4424.70 55
0210 F1 6060.50 0.15 77 6051.08 77 0210 F1 4428.68 85
0210 F2(2) 6065.56 − 0.24 40 6055.96 41 0210 F2(2) 4430.92 53
0400 A1 6116.29 0.46 92 6116.96 92 0020 A1 4461.26 72
0400 E(1) 6118.14 0.48 94 6118.81 94 0020 F2 4493.88 72
0400 E(2) 6123.95 0.22 96 6124.61 96 0020 E 4523.90 79

rms (up to P2) 0.25 0.23 0.20
rms (up to P3) 0.43
rms (up to P4) 0.64

truncation schemes for the Hamiltonian. Despite well-known
difficulties related to asymptotic behaviour of the polynomial
PES approximation, the normal mode variational calculations
using our truncation-reduction technique show quite good
agreement with the final errors corresponding to the precision
of the potential function.45 In Table VI the vibrational levels
are given up to the fourth polyad and are compared with
experimental data when these latter ones are available.
These final calculations were done by using the H(10 → 6)
reduction technique which allows improving substantially
the behaviour of the expansions far from equilibrium and
reducing drastically the number of operators, without degrad-
ing the quality of the model near the reference geometry. At
the same time, this made possible to keep advantage of the
simple Heizenberg-Weyl (a+, a) algebra.

These rms deviations between calculated and observed
levels for 12CH4 are very similar to those obtained with the
original NRT calculations.45 Also we have obtained for the
first time an excellent agreement for available levels of 13CH4

and 12CD4 isotopologues. This confirms the accuracy of the
NRT PES (Ref. 45) via an absolutely independent method of
calculation.

For J > 0, the basis set is written as a tensor product be-
tween the vibrational functions defined in (30) and rotational
functions as ∣∣(�(Cv ) ⊗ �(J,nCr )

)(C)

σ

〉
, (36)

where the rotational part is conveniently symmetrized using
Ref. 78. To test the validity of our method for rovibrational
states, we have variationally computed the energy levels
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for J = 1 only. This corresponds to matrices of sizes NJ=1
A1

= 5752, NJ=1
A2

= 6340, NJ=1
E = 12 092, NJ=1

F1
= 18 558,

and NJ=1
F2

= 17 970. The predicted levels for J = 0 and
1 up to the tetradecad are available in the supplementary
material79 where we give three leading terms of normal
mode contributions in wave functions. This could provide
useful information on possible resonance couplings which
have to be included in effective spectroscopic model for
high-resolution spectra analyses. Convergence for higher J
states requires much more demanding computational efforts
and will be the subject of a forthcoming publication.

IV. CONCLUSION

The ITO normal mode formulation of the full rovibra-
tional Hamiltonian was successfully applied for variational
calculations of energy levels of methane and its isotopologues
for the very first time. Using this formulation as well as the
procedure of term reduction, we were able to converge
variational calculations of ro-vibrational energy levels for J
= 1 at least up to the tetradecad (<6000 cm−1). For this, we
transformed our recent PES to rectilinear, normal coordinates
symmetrized in Td point group. Then we have transformed
in a systematic way each term of the Hamiltonian within
the tensorial algebra formalism taking full advantage of the
high symmetry of CH4. A good agreement with the results of
the previous work45 for 12CH4 using absolutely independent
computational approach based on the exact kinetic energy
operator and internal curvilinear coordinates as well as
supplementary validation for tetrahedral isotopologues (see
Table VI) suggest that the NRT PES represents the most
accurate presently available potential function for methane in
the considered energy range. In Table VI, the (%) column rep-
resents the square of the major normal mode basis component
( × 100) in the corresponding eigenfunction. Note that due
to a full account of the symmetry using the ITO formalism
and due to a new truncation-reduction scheme, we were able
to converge variational calculations to the same results but
with much less basis functions than in the previous study:45

the size of our maximum J = 0 block was 6340 compared to
43 837 in Ref. 45. New prediction for 13CH4 and 12CD4 can
be useful as initial approximation for band centers in spectra
analyses: many assignments as well as accurate modellings
of high-resolution bands in this range are still missing.
Note that though the calculated levels and rms deviations in
Tables V and VI, and in supplementary material are ranged
for convenience according to the polyad numbers, we did not
use the polyad approximation in the Hamiltonian model.

Comparisons given in Tables V and VI and in the sup-
plementary material confirm the validity of the various se-
quences of transformations in Sec. II and of corresponding
computational algorithms that allow systematically building
symmetry adapted full normal-mode Hamiltonians to any de-
sired order. Reliable numerical solutions for eigenvalues and
eigenfunctions obtained without introducing additional phys-
ical assumptions should be useful for further studies. The re-
sults of the present work could serve for the validation of new
physical and mathematical approaches and simplified mod-

els. In particular, a study of a qualitatively new organization
of rovibrational states for much higher polyads of methane
is a big challenge (see, for example, Ref. 80 and references
therein).

The Hamiltonians (20) and (27) will be used as starting
points for the derivation of spectroscopic effective Hamilto-
nians from the molecular PES using an appropriate formula-
tion of contact transformations (CTs).27, 47, 81 This would re-
sult in a re-formulation and simplification of the resonance
coupling scheme by introducing the polyad approximation.
Good agreement with observations for high J in the ground
vibrational state using effective pure rotational Hamiltonian
derived from NRT PES was reported in Ref. 82. General CT
results for polyad Hamiltonians of methane will be reported
in a forthcoming paper.83
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