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Accurate variational high-resolution spectra calculations in the range 0-8000 cm~' are reported for
the first time for the monodeutered methane (2CH;D). Global calculations were performed by using
recent ab initio surfaces for line positions and line intensities derived from the main isotopologue
12CH,. Calculation of excited vibrational levels and high-J rovibrational states is described by using
the normal mode Eckart-Watson Hamiltonian combined with irreducible tensor formalism and ap-
propriate numerical procedures for solving the quantum nuclear motion problem. The isotopic H—D
substitution is studied in details by means of symmetry and nonlinear normal mode coordinate trans-
formations. Theoretical spectra predictions are given up to J = 25 and compared with the HITRAN
2012 database representing a compilation of line lists derived from analyses of experimental spectra.
The results are in very good agreement with available empirical data suggesting that a large num-
ber of yet unassigned lines in observed spectra could be identified and modeled using the present

approach. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4890956]

. INTRODUCTION

Methane ('2CH,) is a very important hydrocarbon in
Earth’s atmosphere and environmental sciences as it acts as
a greenhouse gas.' It is also of major importance for the
modeling of various planetary atmospheres, e.g., methane
is the most abundant hydrocarbon in the atmosphere of
Titan,” and for other astrophysical applications.’™ Very re-
cently theoretical hot methane line lists up to 2000 K have
been constructed.!” Concerning the monodeutered methane
(12CH3D) though it has a quite low abundance (~6 x 1074,
it contributes significantly to the absorption in the so-called
1.58 um transparency windows'! in planetary spectra where
the opacity due to '>CH, is quite weak. It is also an isotopic
tracer and is used to determine the H/D ratios in planetary
atmospheres.'>!® In spite of the growing number of theoreti-
cal predictions'*2° for 12CH, from potential energy surfaces
(PES) and dipole moment surfaces (DMS), there exist a rela-
tively small number of publications devoted to the modeling
of ">CH;D spectra using the global approach.’'-3> Although
one might expect that the current state of the detailed analysis
for a given spectral range could reach the same precision as
for 12CH4, this is not the case. The reason is that the H—D
substitution breaks the symmetry from 7; group to C5, group
and consequently some degeneracies of ro-vibrational states
are removed making the line-by-line analysis quite different
from the major isotopologue. In addition it is the most abun-
dant deutero isotopologues but its spectra appear more com-
plicated and thus more difficult to interpret and analyse than
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that of CD;H considered in Refs. 33 and 34 due to strong
Fermi resonances between the stretching and bending modes.
The highly excited C-H stretching vibrations of CH,;D and
CD;H were studied in the frame of the local mode theory.*
It was thus shown that in the case of CH;D the C-H local
modes strongly mix with bending normal modes.

Past and current high-resolution line-by-line analyses (in
positions and intensities) for '?CH;D are mainly based on
empirical effective polyad models using normal mode rep-
resentations. These models treat all states belonging to a
manifold of strongly interacting vibrational levels in a cer-
tain energy range simultaneously.>** Most of the spectro-
scopic data and assignments up to 5000 cm~' included in
the last edition of the HITRAN database*®*’ were formed
by using such polyad-by-polyad empirical models. Above
5500 cm~! the new HITRAN compilation was based on
spectra analyses*® and on experimental measurements at
cold and room temperature. Most of lines measured in
Grenoble university with the laser cavity ring-down (CRDS)
method have been compiled in the WKLMC list* provid-
ing also some empirical lower state energy levels. Line
positions in large scale Fourier transform 12CH3D spec-
tra recorded in Zurich ETH (2900-9000 cm™') have been
partly analysed by Ulenikov et al,” resulting in band
center determination of 57 new bands and in correpond-
ing lists of assigned transitions. However, no line inten-
sities were reported. CRDS spectra of the C-H stretch
fundamental and overtones have been recorded’’ up to
16 600 cm~!. Recently, over 1360 line intensities in the range
40004550 cm~! were fitted with an effective transition mo-
ment model with a RMS of 9% that represents the best avail-
able detailed line-by-line analysis.*> Nevertheless, numerous
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lines have not been reproduced at the expected accuracy
whereas a large number of lines remained unassigned. More-
over, the extrapolated empirical effective models beyond fit-
ted data fail to describe correctly spectra due to numerous in-
teracting vibrational levels and sublevels. As discussed later,
the polyad structure of CH;D is not well-defined compared
to that of methane. Consequently, some vibrational bands and
resonance coupling parameters have to be added “by hand”
in the model in a pragmatic way. In this context variational
calculations based on PES and DMS permit accounting in-
herently for all possible intra-molecular interactions, includ-
ing Fermi and Coriolis resonances coupling terms in a wide
spectral range. A considerable progress in theoretical predic-
tions of highly excited vibration-rotational states and transi-
tions from ab initio PES and DMS as well as in improve-
ments of computational codes for solving the Schroedinger
nuclear motion equation have been recently achieved (see, for
example, Refs. 26, 29, and 52-64 and references therein, the
list being not exhaustive). This help resolving many issues re-
lated to the analysis of experimental spectra, particularly for
methane.®

In this work, we report global predictions of rovibrational
spectra and dipole moment intensities for '>CH;D using our
recent PES?® and DMS® (hereafter referred to as NRT sur-
faces) of methane based on extended ab initio calculations.
To explicitly account for all symmetry properties, we extend
the normal-mode tensor formalism combined with variational
calculations as was already used for PH;, '*CH,, and '*CH,
and permitted obtaining accurate predictions>”3%%7 for ro-
vibrational spectra. In order to optimize the cost of variational
calculations, we have developed a truncation-reduction tech-
nique for the Hamiltonian normal mode expansion and for the
basis set compression. On the other hand, we focus on the ex-
plicit derivation of formulas for the passage from T to C;,
species through symmetry considerations and nonlinear co-
ordinate transformations in the laboratory and Eckart molec-
ular fixed frames. Corresponding isotopic relations are thus
derived.

Il. COORDINATE AND SYMMETRY
TRANSFORMATIONS

For this work, we start from analytical expressions for
the Hamiltonian and DMS components of the main isotopo-
logue '2CH, and then proceed by axes switching to derive
theoretical model adapted to 12CH3D. This is done by means
of T, « C,, transformations. Because of mass-dependent
contributions and of the symmetry breakdown, the normal-
mode/Eckart frame conversion from '*CH, to '?CH;D is not
direct. Computationally speaking, it turns out more conve-
nient to first treat '>CH, as a particular case of C;, symmetric
top molecule before properly deriving theoretical expressions
for 2CH;D. Accordingly, the following transformation:

I 11
2CH, (T;) — "*CH, (C;,) — "*CH;D (C;,) (1)

will be explicitly considered hereafter. Useful relations corre-
sponding to the steps I and /I will be also given.
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A. Laboratory and Eckart frames
1. Definitions and conventions

Let us now summarized the expressions relating the 3N
Cartesian coordinates in the body fixed frame (BFF) to those
in the laboratory fixed frame (LFF). Let X; i=1,2,..., N)
denote the position vector of particle i and let (£ s 52, 23) de-
note a right-handed triad of unit vectors defining a LFF. The
vector components « are thus defined as X,;, = £,.X;, where
X, =X, X, =7, and X;; = Z,. Similarly, let x; denote the
vector position of the body fixed Eckart frame with unit vec-
tors (f;, f5, f3)- The explicit construction of the Eckart frame,
which coincides with principal axes frame at equilibrium, is

made by means of the vectors (F;, F,, Fj) as follows:5%70

I?a = Zmiaiaxi = Z Fa’aza’ (2)
i o

where m; is the mass of the particle i, g,, is the reference
configuration relative to the BFF and F,,, = ), m;a;,X,,
If X, = >_;mX; denotes the center of mass vector, then we
have in frame-independent vector notation X; = X, + X;
and we thus rewrite’®”! the Eckart vectors F, = 3, m,a;,X;

since Yy _,m;a,, = 0. Following Eckart, a set of vectors fixed to
the body is expressed by

Lfy. for f5] = [Fy, Fy, F1F12, 3)

where 7 is the symmetric Gram matrix with elements F

= Ij"al? - Here the notation of the type [, ¥,, y;] stands for
the 3 x 3 matrix whose columns contain the components of
the three vectors y,. This frame is located at the center of mass
X,,, and always satisfies the relation ) _, ]70( X ﬁa = 0 which
reduces to the original conditions given by Eckart®® when sub-
stituting the F vectors by the right-hand side of Eq. (2). Intro-
ducing the orthogonal 3 x 3 transformation S~' relating the

space orientation of the LFF to the BFF, we write

Xig = Xoom + D Sap 0.6, 0x,5, 4)
B

where (6, ¢, x) are Eulerian angles. In the case where Eckart
conditions hold, it has been shown that the matrix C speci-
fying the Eckart frame is a pure rotation matrix which is just
the inverse of the familiar direction cosine matrix S contain-
ing the Eulerian angles.””> This means that the Eckart vectors
determine the orientation of the Eckart frame and that the di-
rection cosines C satisfy

C=S8"'"=FFF) 2 F,=(FF),, 5)

where C,z = Za. ﬁ, and F is a matrix whose the elements are

the F,,, of (2); the three eigenvalues of the FF matrix being
chosen to be positive. Note that Eq. (5) corresponds to Eq. (3)
written in matrix notation. The direction cosines could be con-
veniently expressed in terms of Euler angles. Now the Eckart
frame has been properly defined, let us return to our initial
problem. It is worth noting that the standard axis conventions
between T, and C;, are not the same: the rotating frames at-
tached to the molecule are usually defined in a different man-
ner. As specified in the Appendix, in case of C;, symmetry
the quantization axis (Oz) is taken as the C; axis (typically
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2’=2"

FIG. 1. Axis definition and atom numbering of a five-atomic system in its
equilibrium configuration. For XY, molecules, the frame is (x, y, z) for T,
symmetry and (', y, Z') for C;, symmetry. For XY;Z molecules, the frame

is (x’,y", 7’) and is deduced from (v, ¥, 7) by an overall translation in the

—Z' direction. For methane, H = (1, 2, 3, 4) and for CHSD, H=(2,3,4)and
D= ().

the C-D bond for CH,D) while for 7,; symmetry, it coincides
with one of the S, axes. The axis representation is summa-
rized in Fig. 1 where the frames (x, y, z) and (X, y/, Z) are
both for methane but stand for the T, and Cj,, respectively.
They are linked together through the rotation

Si-

1 1
V6 NE
1 1 1
Re=|\—"% % #1|- (6)
2 0 L
NG V3
and we write
oy, ) =Ry .(x, v, 2 ™)

In terms of group theory, the (x, y, z) system spans the F,
irreducible representation (irrep) of T, while (¥, y') and (2')
span the E and A, irreps of C;,. The total angular momentum
J transforms as the F| irrep of T, and spans A, + E when
subducing in C;,, (see Eq. (A1)). The T, — C;, transformation
(6) applies to the body fixed frame and does not depend of
vibrational motions.

In Fig. 1, the (x”, y”, ") frame is linked to CH;D and is
defined by a translation ¢ over (07') of (x', ¥, 7'), explicitly
expressed by means of geometric considerations as

p= LMo = mu) ) en1an0, ®)
doim

where r, = 1.08601 A is the optimized value accounting for
our best ab initio estimations,*® m, = 12, my; = 1.00782503,
and m;, = 2.0141017779 amu. The passage of Cartesian co-
ordinates from XY, to XY;Z systems is thus fully determined
through R,. As a simple illustration, following the numbering
convention of Fig. 1, the reference configuration a; = (x;,, y;,,
z;,) for XY,-type molecules in (x, y, z) transforms in (x”, y”,
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Z") for CH;D as

Y(1) = (c, ¢, c) Z(1) = (0,0, 1.022)

Y(2) = (—c,—c,c)  Y(2) = (1.024,0, —0.426)

Y(3) = (c,—c,—c) = Y(3) = (—-0.512, 0.887, —0.426)

Y(d) = (—c,c, —c)  Y(4) = (=0.512, —0.887, —0.426)

X(5) = (0,0, 0) X(5) = (0,0, —0.064)

with ¢ = r,/+/3 = 0.627.

2. Symmetry coordinates and normal
mode coordinates

In all problems of molecular physics, it is of major im-
portance to choose an adequate set of coordinates allowing
the maximum separation of the individual motions. Though
the kinetic energy operator of nuclear motions takes a particu-
larly simple form when expressed in the space-fixed Cartesian
coordinates, 2T = —#> Y, m;'3%/8X?, it is more convenient
to introduce a new coordinate system which is suitable for a
complete description of the individual types of motions. In
the usual treatment of molecular rotations and vibrations, it is
thus customary to introduce (3N — 6) internal displacement
coordinates R; defined as components of the vector R = (r,,
Ty, ...; 01, 6,, ...) and the three Euler angles (0, ¢, x) for
the rotational coordinates (see Eq. (4)). Internal coordinates
can be expressed in terms of (3N) Cartesian displacements d,
= x; — a,. Since the seminal work of Wilson,” it is common
to treat semirigid nonlinear molecules having a well-defined
reference structure by means of (3N — 6) nonredundant, rec-
tilinear mass-weighted normal coordinates Q; € (—o0, 4+-00).
For 5-atomic systems, they are related to d; by a linear trans-
formation which reads’>~7°

9

dig = Zmi_l/zlia,ka @=1---5), 9

k=1

where « stands for the BFF components. The orthogonal-
ity property » 1, ;1;; = 8, allows removing quadratic cross
terms from the potential V(Q). The 1 transformation is ob-
tained by diagonalizing the Hessian matrix of the potential ex-
pressed in mass-weighted Cartesian coordinates. The Eckart
frame defined above presents the advantage of minimizing the
vibration-rotation Coriolis coupling terms for small amplitude
vibrational motions and is a quite natural choice when consid-
ering normal coordinates. The Eckart conditions are satisfied
by choosing”’

DomPL =0, Y m”a; x1,=0.  (10)

To take full advantage of the symmetry, it is convenient
to consider symmetrized normal mode Q™ coordinates cor-
responding to vibrational normal modes near the equilib-
rium configuration. Methane-type molecules possess nine vi-
brational degrees of freedom. For CH, spherical top, they
are divided into four modes, namely, one non-degenerate
mode (v,), one doubly degenerate mode (v,) and two triply
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degenerate modes (v, v,) labeled using the irreps I" of T,.
For CH;D symmetric top, they are divided into six modes,
namely, three non-degenerate mode (v, v,, v;) and three dou-
bly degenerate modes (v,, vs, V¢) labeled using the irreps I'
of C;,. A simple way for accounting for the symmetry prop-
erties is first to construct curvilinear symmetry-adapted coor-
dinates S,EZ) with respect to the molecular point group. They
are expressed as a linear combination of the internal coordi-
nates R;. For a given point group G, we denote by U the group
symmetry transformation and we thus write’>

S = UR. (11)

When making isotopic substitutions H—D, the symmetry
breaks down and the energy levels are classified according
the irreps of a lower order point group G’. Using projection
operators PRG/’ it is possible to derive the curvilinear symme-

try coordinates adapted to G D G’ through a transformation
Uy as

& =, ST, (12)

For XY, ' = A,, E, F,) and XY,Z (I" = A,
E) molecules, the transformation U is given explicitly in
Eq. (A3). The normal coordinates Q also transform according
to the irreps of T, and C;,, and in the rectilinear approximation
are related to the symmetry coordinates as
(") (") a
[STd ]rect - LTdQTd - uSLC3L' G, (13)
where L is composed of the eigenvectors of the conventional
GF matrix of Wilson.”® We can also derive the 1; matrix by
removing the six zero frequency normal coordinates associ-
ated with translation and rotation. The remaining 3N x (3N
— 6)-dimensional matrix adapted to the symmetry is ex-
pressed as

I, = M2 BOL;, (14)

where the B matrix relates Cartesian and internal coordinates
and M is a diagonal matrix, the mass of the particles being di-
agonal matrix elements. In vibrational spectroscopy, it is com-
mon to define the harmonic frequencies w, = (A} )"/?/2x¢,
expressed in cm~!, and thus to introduce dimensionless coor-
dinates q,(al;) = ()Lg) JHHVA Qg,) where )Lg) are the eigenval-
ues of the GF matrix associated with the k normal modes.

In the rectilinear approximation, the relation between two
sets of normal coordinates is quite straightforward to establish
using Egs. (13) (or (AS)) and (A3),

a;’ =Aqg . (15)

From the transformation (1) we have explicitly:

e For the step I, that is when rotating the frame
from '*CH, (T, to "CH, (C;,), we simply have A
= L;TlduSchgv = U, where the 9 x 9 matrix U/, is given in
Eq. (A6). Here the ¢ index in L. means that we work with the
dimensionless coordinates.

e For the step /I, which corresponds to the passage from
12CH, (C,,) to '>CH;D (C,,) we have A = L;CISUL;7C2 where

J. Chem. Phys. 141, 044316 (2014)

TABLE 1. Symmetry-adapted force constants FI./ = 32V/3Sg)8S;.1;)
(md A=) and harmonic frequencies (cm™") for 12CH3D deduced from those
of methane '>CH, using Egs. (12), (16), (17), and (18) and w, = 3039.56,
w, = 1571.45, w; = 3162.17, and w, = 1344.76 em~1,

This work This work Ref. 50 Ref. 78
F 1.513304 o8 3075.35 3073.68 3071.40
F, —0.117235 , 2288.54 2288.74 2285.20
Fis 0.011036 [oN 1339.24 1340.71 1339.80
Fy, 0.596173 N 3161.89 3163.88 3156.80
Fyy 0.101528 s 1508.91 1504.30 1508.10
Fyy 1.500561 Ion 1187.76 1188.30 1188.10
1 1.494189
F4a5;3 —0.117235
Fsyse 0.596173
1 0.648537
a,B=a,b,a#p

the primed quantities denote some isotopic species. This ma-
trix reads for the A; bloc

—0.5619 0.6981 0.0271
A(A) =] 0.8266  0.4939 0.0177 |, (16)
0.0026  —0.0644 0.9967
and for the (E, a) bloc
0.9995 0.0012 —0.0021
A(E,a)=| —0.0042 09119 -0.3180 |, a7
0.0040 0.3875 0.8747

the (E, b) bloc being similar. The harmonic frequencies of
different isotopologues are related through A as

I, =AIA, (18)

where [, is a diagonal matrix which contains the w values.
The o' values for >CH;D was thus derived and are given
in Table I. We clearly see from Eq. (16) that the stretching
modes v, and v, are strongly mixed due to the heavy C-
D bond. Thus the v, band of '?CH,;D could be seen as the
principal counterpart of the v, band of methane >’CH, with
the frequency which goes down by 800 cm™!, leading to a
complex polyad structure. For practical applications, one has
to consider true curvilinear coordinates which are nonlinear
functions of Cartesian coordinates and consequently of nor-
mal coordinates. To this end, the definition of Eq. (13) must
be extended and can be written as a power series expansion

1 i "
Sv(r) [ () [ T _(a@”)
ic — Lgi il + E ¢:i,jk9jo' ko

1 ’ " "
T (@ ([T
+ —Lq;i,jk,qjg, Qi Digm” + (19)

6
with the symmetry condition [(g) x T'(gy) x -+ x T'(g)
D I'. So in the general case, the transformation of rectilinear

normal coordinates between two isotopic species is written as

Q) =A q(GF,’) + Q(q(GFf/) ) (20)
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where G is a nonlinear function to be defined. The procedure
will be explained in Sec. II B.

B. Nonlinear normal coordinate transformations
1. Analytical derivatives

Here it is supposed that we work with translationally in-
variant X; coordinate. The method described above allows to
properly transform internal or Cartesian coordinates in nor-
mal coordinates in the frame fixed in the body. From Eqgs. (4)
and (9), we see that the transformation from X to Q is lin-
ear. It may also occur that the transformation from normal to
Cartesian coordinates is useful. For example when only po-
tential, dipole moment or other functions in terms of normal
mode coordinates are available, a backward transformation to
Cartesian coordinates is required in case of isotopic substitu-
tions. To this end, we have to evaluate the Jacobian 0Q/9X;
with respect to space-fixed nuclear coordinates, to avoid us-
ing x; coordinates subject to six constraints. However, it is to
be noted that the Jacobian matrix is not constant in that case
but is a function”® of Q. As a direct consequence, such a Q to
X; transformation becomes nonlinear. As stated by Sutcliffe®
“The nonlinearity is a topological consequence of any trans-
Sformation that allows rotational motion to be separated.” We
thus need to expand the function Q(X;) and evaluate the suc-
cessive derivatives at the reference geometry (Q, = 0). A
possible way to do this is to follow Refs. 81-83, using the
above considerations. From linear momenta operator trans-
formations, Louck er al.8! have derived the first derivative,
which will serve to compute second, third derivatives and so
on. It reads

90,
oX,

1103

=m)PL, 1, + . ZQ

oL, x| @y
j
with the vectors

L= Lipifs

gy (22)
= ZQO‘V ¥
y
where
iy =m;(CA'M),,,, (23)
with the skew-symmetric matrix®’
0 —d4i, a;y
Al=|a 0o -al|. (24)
—ajy iy 0

As Al is the sum of three 3 x 3 antisymmetric matrices, the
link with the Lie algebra of SO(3) is straightforward. The
symmetric matrix M is defined as [-G + tr(G)I3]_1, with
G given in Ref. 69. Noting that

Al = foa Xfﬁ—Zazy €ypa

ler j.k — rk_'

(25)
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and that M corresponds to the Wilson’s (I’)~! matrix,”? the
expression (21) reduces to that given in Refs. 82 and 83. Here,
the &’s are the Coriolis coupling constants. The first deriva-
tives can be obtained analytically and computed at the equi-
librium. We thus write

ZDkX +_ZDta1a X +’

lOllO(

(26)
where
Df g = m g . @7
and
i’ k
l o o Zeaﬂy [Qa’y]o Di,ﬂ
+ ] ZD o (28)
Y
with

mAi
235 (ma3,)

Expression for [82Qk/3X 0X; /3] derivatives could be also de-
rived analytically from the following quantities taken at the
reference geometry

oC,
o Z
|:BT:| - Capy’ [Q
iv o v

IR, 3C,. ] . o
[T]:m{[ax} Ay loy + Ay M } 0
-1
i’g’ — 71yl aMﬂ’y
ﬂy Oy 0/3/ aXl‘/a/ ’

with, in case of spherical tops, I, = I, = .. We can also
note that our D’s correspond to the L’s of Ref. 82 expressed in
a quite different form. Moreover, the 3 x 3 matrix 5, given
in Eq. (23) can be related to the matrix 8 of Crawford®* used
by Watson””®> to derive a general molecular kinetic-energy
operator as @ = —Cp.

Higher partial derivatives evaluated at the reference ge-
ometry are necessary but require tedious calculations and the
resulting formulas could be very complicated. In Ref. 82 the
analytical derivatives were tabulated up to the third order. Al-
ternatively, we may also use Egs. (4), (5), and (9) to express
normal coordinates in terms of translationally invariant coor-
dinates as

(@], =m Al 1) = (29)
Y

Q =1M:(CX, —a,). €2y

Using Egs. (68) and (71) of Ref. 81 based on the fact that
d(CC)/0X; = 0, it is straightforward to show that

B _ J
- Z % ﬁVCaV Qw 'y’ (32)
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and in that case, from Egs. (22) and (25), the first derivative

of (31),
. aC

G5, + —X, 33

I

reduces to (21). Though other derivatives could be evaluated
in a recursive manner, we shall consider in the next paragraph
a numerical method to compute the successive derivatives of
the direction cosines. This will allow converting any normal
mode operator to a Cartesian form.

0Q
0X,

=

iM

2. Normal mode isotopic transformations

The nonlinear transformation described above is useful
because it opens the route to the derivation of anharmonic
force fields and more generally to spectroscopic constants for
different isotopologues from the reference molecule.’® In par-
ticular this allows to relate two sets of normal mode coordi-
nates and thus to carry an operator having the Watson’s form
for the reference molecule to its isotopic counterpart. From
Eq. (31), we write this transformation as

1

~ l ~ 1 ~ 1
Q=IM:CCM'2IQ +a’;) —IMza,, (34
where the primed quantities stand for some isotopic species.
From the ingredients given above, the turning transformation
CC’ now depends on Q' and can be represented as a power se-
ries expansion in these coordinates. As shown in Ref. 86, the
first term of Eq. (34), namely iM%([CC/]Oa/i — a;), vanishes.
In that case the transformation (34) can be thus rewritten in
terms of dimensionless coordinates as

g5 + 9. (35)

where the A} coefficients are those defined in Eqgs. (15)-(17)
and

qr =

G=T"q;qp,+ - +T." " q5q, - qr. (36)

is the nonlinear part of Eq. (20). The 7;”"" coefficients are
determined through the expansion of Eq. (34). To calculate
the power series expansion coefficients, we need evaluating
the successive derivatives of C,z and C,4 at the Cj, refer-
ence geometry g/ = 0. Using Eq. (5), this amounts to calcu-
late derivatives of F~!/2. Here we employ a numerical pro-
cedure to systematically account for derivatives at any orders.
The direct way would consist in the computation and differ-
entiation of the eigensolutions of F which is not a trivial task.
Here we propose a method for such calculations without com-
puting any eigenvalues/eigenvectors. This procedure can be
summarized as follows:

(i) First we compute the inverse matrix H = F~! which is
well-known for a 3x3 matrix.

(i) Then we compute the power series expansion of
U = COS(H'/?) which involves only integer powers of
H, recursively computed as H* = HH*!.

(iii) At each step of (ii), we employ the Taylor expansion for
each element of the resulting ¥ matrix in power series
of g.
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(iv) Finally, we compute the ARCCOS series of U by the
same procedure as in the step (iii).

This procedure is not numerically exact but allows com-
puting derivatives of F~!/2 at a precision ¢. For this work,
the COS series was recursively computed up to 25th powers
while the ARCCOS series was calculated up to 60th powers to
reach the accuracy & = 107'°, By this way we are in position
to convert an arbitrary normal mode T, operator of methane
to its counterpart for C;, (CH;D or CHD;) or C,, (CH,D,)
isotopologues. Note that the procedure proposed above is not
unique. For instance, to evaluate square root matrices a more
rigorous linear algebra mathematical treatment could be con-
sidered from the matrix invariants and the spectral decompo-
sition of F. As a simple numerical application, we give the
normal mode transformation of the first non degenerate coor-
dinate ¢, from '>CH, (C;,) to '>*CH;D,

[CH,] — [CH;D]

g\ = —0562¢"" +0.698¢'" +0.02714'"

+ 0.00074(6],(6?)2 _ 0'00061q/gi)q/(6£b?)
—0.00059¢%; (4's))” — 0.0000584'5 (¢'%)’
4o, 37)

Similar expressions are derived for the other coordinates. The
first line of Eq. (37) is nothing but the linearized equation
(15). Using Eq. (A6) we can finally build a set normal coordi-
nates for '?CH,;D from that of '>CH, (7). In Ref. 86, Bykov
et al. have given the condition of existence for the ;""" co-
efficients, that is whether CC’ depends on the vibrational co-
ordinates or not. They have shown that all 7,;”"" vanish if
€,s:J3 = 0 where the parameters jj, are given in Eq. (49).
Such a requirement occurs when isotopic substitutions do not
result in the symmetry breakdown and thus no change in the
center of mass of the molecular system occurs (e.g., '?CH,
— 13CH, or 2CH, — '>CD,). In the latter case it follows
from the relations (10) that Eq. (15) holds and normal coor-
dinates transform linearly between each isotopologue. This
is illustrated, for example, by Eqgs. (11) and (17) of Refs. 29
and 30.

C. Potential expansion

We use our recent NRT methane PES obtained by exten-
sive electronic structure calculations at the CCSD(T)/pCVQZ
level of the ab initio theory at 19 882 geometry configura-
tions up to 20 000 cm™! with subsequent corrections due to
pCVS5Z radial contributions and with empirical scaling of four
quadratic parameters to the fundamental frequencies.?® Ini-
tially, the PES has been constructed as an analytical represen-
tation adapted to the T, point group for the main isotopologue
12CH,. We shall convert it here to the C;, representation. The
NRT PES has been built as a combination of the symmetrized
powers of the {Sf(? }T, curvilinear coordinates. From Eq. (12),

the PES is transformed and re-expressed in terms of {Si(; ’)} c s

3v

where each S, is expressed as a linear combination of the
3v
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Morse-cosines-type functions in the following manner:

S = 0+ s+ /Y3,

S;Al) = (Cyy + Cp3+ C3y — C, — Cpy — C,)/V6,

s =,

Sfxf) =3+ ys— 2y2)/\/6,

Sty = O = ¥)/V2, (38)

S5’ = (Ci3+ Ciy = 2Cy5 — Coy — Cpy +2C3) V12,
85 = (Ciy = Ciy + Coy — C)/2,

Séf) =(=C;3=Cy+2C, = Cp3 = Cpy + 2C34)/«/E,
Sty = (=Ciy+ Cp5+ Cpy — C3)/2.

Here y, = 1 — exp([—1.9(r; — r,)] and C;; = cos(¢,;) — cos(6,,)
where cos(0,) = —1/3. Finally, the potential expansion can be
written as

viR) =S F,[] (S(£)>: =3 F, [] (Sf’)z
{p} io ¢ P} iy *
(39)
where the indices o and y stand for components of degen-
erate vibrations. The component-by-component PES expan-
sion (39) contains 1118 parameters F in the T, representation
and 2538 parameters F” if C5, symmetry coordinates are used.
The complete set of F’ parameters is provided in the supple-
mentary material.®” In order to express the PES as a nonlinear
function of rectilinear normal coordinates, we proceed in sev-
eral steps. First, the symmetry coordinates are written in terms
of Cartesian coordinates and then using Eq. (9), we obtain the
final relation V(R) — V(Cart) — V(q). The 12CH3D normal
mode potential is completely deduced from the main isotopo-
logue and reads

V(g) = % Y gl + é A e S
io iojo'ka”

(40)
with ¢ = q"’. To test the nonlinear normal to Cartesian
coordinate transformation described in Sec. II B, we carried
out the transformation V(Cart) — V(q) and then considered
a backward transformation V(q) — V(Cart). We have thus
checked that this allows obtaining the same Cartesian force
constants as the initial ones.

Ill. ITO NORMAL MODE MODELS FOR 12CH3D
A. Rovibrational Hamiltonian

There exist essentially two ways of deriving the normal-
mode Hamiltonian for the deutered methane. The tra-
ditional method starts from internal coordinates in the
mass-independent potential representation to derive transfor-
mations using the Wilson GF procedure. The second one
is probably less intuitive and direct as it is based on the
transformation of the Hamiltonian of the “mother molecules”
using the nonlinear relations given above. It may be also
useful to make the link between components of one of the
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subgroups and the irreducible tensor operator (ITO) formal-
ism of the full T, point group. This is helpful for a deriva-
tion of symmetry-adapted form of an effective Hamiltonian
for methane polyads obtained via the Contact Transformation
method using MOL_CT program.®® Some examples are given
in the Appendix.

1. Hamiltonian model for '?’CH,D
from internal coordinates

Here we have extended our recent work on pyramidal
four-atomics®’ to five-atomic symmetric tops by using the
transformations in Secs. II A 2 and II C. We will just re-
call briefly the methodology which has been already de-
tailed elsewhere.”>®” The commonly used vibration-rotation
Hamiltonian in the Eckart BFF frame for a nonlinear poly-
atomic molecule in normal coordinates was formulated in its
most compact form by Watson.”” It will be thus referred to
as Eckart-Watson Hamiltonian (EWH) in what follows. For
12CH3D, the EWH expressed in rectilinear dimensionless nor-
mal coordinates g reads

6

1
Hp.q.D) =53 ) o +V@+ Uy
k=1 o

1
+5 %j(fa — T Map(Jy — 7). (A1)

where J, < J /h and 7w, < m /h are the dimensionless
BFF components of the total and vibrational angular momen-
tum, respectively. The reciprocal inertia tensor u = u(q) is a
3 x 3 matrix related to the Qfxﬁ coefficients of Eq. (22) as

wao) =) Q'm;'Q 42)

In Eq. (41), V(q) is the potential function (40) and Uy, (q)
= —1/8>", Iy, (q) is the Watson correction term’’ which
has no classical analogue.

As already pointed out, for symmetric and spherical top
molecules, it is highly advantageous to exploit the molecu-
lar symmetry for block-diagonalizing the Hamiltonian ma-
trices and thus for reducing the cost of computation and
memory requirements. To this end, we have introduced ef-
ficient truncation-reduction procedures for the Hamiltonian
and wavefunctions to make the solutions for quantum me-
chanical nuclear motions tractable. For a full account of sym-
metry properties, the ITO formalism initially developed for
spherical top effective Hamiltonians turns out to be efficient
for our purpose. Computationally speaking, the tensor formal-
ism proposed by Nikitin et al.®° is very convenient for writ-
ing operators at arbitrary order. It has been recently extended
to ab initio Hamiltonians and dipole moments normal mode
expansions.””

Here we just recall the main point of the method as
the detailed construction of ITOs can be found in Ref. 89.
First, we construct symmetrized powers of creation oper-
ators A*(-A) (nondegenerate modes) and AF‘"* (dou-
bly degenerate modes) where (/m) specify the powers in
elementary operators at and a. The annihilation part is
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obtained in a similar way and the creation-annihilation cou-
. A / .
plings are defined as C( - (ATEAD) @ AGANAD (=1,
T.) @) .
2,3)and £, " = (ATO"AD @ AL Aﬂ)(,jg (j=4,5,6).
For the six-mode coupling scheme, the vibrational operators
are then written as

(A, A)I(T,) (A) (4) VBNG
V{l’m’}{lm}a ((L ® L, " ®L; )
Ty, 43

(/:(F ) ®£<r )) (Tys) ®L,(r >> v

v

where the sets (Im), A, and I stand, respectively,
for {UDUNL)Uymy ) (Lsms)(Lgmg) }, {A4AsAG), and
{I'yI's"4sI¢}. In more concise notations, hermitian and
anti-hermitian vibrational operators may be constructed as

(F)

Vo, = Vs, (44)

for diagonal operators with (I'm’) = (Im) and A’ = A and as

. +
V) = ot (vifv) +e(Va) ) : 45)

otherwise. Here ¢ denotes the parity of the operator. The phase
factor e depends on the parity and is set to ¢ = i for
odd operators (¢ = —) and to 1 otherwise (¢ = +). Follow-
ing the coupling scheme introduced by Moret-Bailly’' and
Zhilinskii,”> the symmetry-adapted rotational operators read

Q(K,|k|,T
REAK ML)

r

_ (K)G]l(“,_ar R]?(K) + (K)Gljrkar R?/EK), (46)

where R,? () designate rotational spherical tensor operators
of degree 2 in J, and of rank K in O(3). G refers to the ori-
entation matrix. Since the Hamiltonian must be hermitian and
invariant under time-reversal, the operators V and R have nec-
essarily the same parity in elementary momentum operators
resulting to € = (=D<.

All the theoretical ingredients for transforming the EWH
(41) to its tensorial counterpart in a systematic way have been
implemented in our computer code TENSOR. We write this
transformation for C;, molecules as

EWH — H@',a,0)= ) 1, ((V© @ RAKKD)A),
{i}

(47)
where the parameters ¢ are determined algebraically from the
PES and kinetic energy operator normal mode expansions.
The formulation (47) is particularly useful for non-Abelian
point groups because the components on degenerate irreps are
rearranged into a more compact form. Moreover, all vibration-
rotation resonance terms allowed by symmetry selection rules
are systematically taken into account for a given order. The
key feature of this procedure is that all degeneracies are
strictly treated. Due to the symmetry breaking a part of degen-
eracies is removed, the number of symmetry allowed terms in
(47) at a given order being larger than in the methane T, case.
For example, at order 6, the number of terms is approximately
four times bigger for ?CH,D compared to methane '>CH,.
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2. Hamiltonian model for '?CH,D deduced
from T, normal coordinates of the “mother”
isotopologue 2CH,

Both mass-dependent normal coordinates and the choice
of axes are different for the two isotopologues. For this rea-
son, the relation between the corresponding EWH expansions
is not trivial, particularly in the case of symmetry breaking
isotopic substitutions. In order to establish these links for an
arbitrary order, we start directly from the tensor model de-
rived for 12CH4 in Refs. 25, 29, and 30 where a form similar
to (47) was derived and apply the transformation scheme (1).
We skip here technical details since for this work we have
built our Hamiltonian model following Sec. III A 1.

The T, rotational operators RT, (26) of Ref. 25 can be
conveniently transformed in the C 3; frame from the transfor-
mation properties of the total angular momentum. By this way
each RT can be related to the rotational operators (46) in the

followmg manner:

[T;] — [C5,]

Riil‘” \lle(l J04,) + /- 1 Rl(l 1E) + le(l J1E)

RZI(I,FI) R %RI(I’O’W _ \/gR;(l’lE)

Ré(ZE) fRz(z 1E) 1 R2(2 2E) (48)

Rz(fv.Fz) N %Ri(Z,OAI) 3}R2(2 lE)_I_/ 1 R2(2 1E)
+3 2(2 2E) /+ f 2(2 2E)

R?(Z,Fz) N \/%Ri(Z,OAI) n ‘/TERaZ(Z’IE) _ %R§(2,2E)‘

From the nonlinear relation (35), we could also show that each
T, vibrational operator VT/ (23) of Ref. 25 is expressed as a
sum of operators V (43), where for a given order the sum will
run over all (Im) and ('m’). Accordingly the normal mode
tensor formulation could be directly transposed from methane

(T,) to '2CH,D
(A)
& (F) (F) (F) QK [k|,T") 1
(virory)” =2y (e e REET)
(49)

where the coefficients C are evaluated numerically from all
previous transformations.

B. Transformation of the dipole moment components

The calculation of accurate dipole moment transitions
requires the use of an analytical DMS representation. For
this work, we have considered the ab initio NRT DMS®
whose analytical form has been initially constructed for the
main isotopologue '2CH,. The dipole moment is a polar vec-
tor and transforms according to the irrep D) of the full
rotation group O(3) and for tetrahedral molecules the g
(0 = x, y, z) molecule-fixed Eckart components transform
according to the F, symmetry. Originally, for the calcula-
tion of CH, spectra,®”-%® the MFF dipole moment u compo-
nent has been fitted to ab initio points using the sixth order
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polynomial expansion in symmetry-adapted (7,;) normal
mode coordinates

F,)
WIT) = Zdz g+ Y diy il al) + o (50)
io,jo'
with ' x I'" x --- D F, and contains 1053 parameters. The

x and y components were deduced from Eq. (50) by sym-
metry considerations and contain 1176 parameters. In order
to compute intensities, the DMS components were converted
to ITOs adapted to T,. For the main '>CH, isotopologue,
our potential energy and dipole moment surfaces have been
validated® via comparison on extensive rovibrational spec-
tra calculations with experimental data for various tempera-
tures in the range 0-9300 cm~!. Also a '2CH, line list has
been generated'? up to 2000 K in the infrared range [0—5000]
cm™! for astrophysical applications. The intensity errors have
been estimated to be of the order of ~5% at least for strong
and medium lines. The T, isotopic species '*CH, and >CD,
were also considered””3° by transforming the (x, y, z) normal
mode components using Eq. (15). The agreement between ob-
served and ab initio lines was of the same quality as for the
major isotopologue '>CH,,.

To derive the dipole moment components for '>’CH;D in
normal coordinates and in appropriate axes without fitting any
parameters, the procedure is less trivial than in the case of
symmetry conserving substitutions and could be also summa-
rized by the scheme of Eq. (1).

e The step I consists in converting in Cj, axes the up'
components which were initially adapted to T, axes. Accord-
ing to Eq. (6), the C;, components transform linearly from
the T, ones as

(1, P, a0y’

(F) (F)  (F\i
Ka sy s 14 ).

=Ry (e oy e (51)

and the C,, normal coordinates for methane are derived from
Eq. (AS5). We obtain 2365 and 2428 operators for A, and (E,
1) components, respectively, by this purely algebraic transfor-
mation without any fit of parameters.

e In the step 71, we substitute the nonlinear normal mode
coordinate transformation (35) into Eq. (50) to obtain

ut(q) [CHy , 7,1 — p2'(q) [CH;D, C3,1. (52)

A form similar to Eq. (50) is thus derived for '>?CH,D by sym-
metry and coordinates transformations only.

To be consistent with our Hamiltonian formulation, we
also exploit the C;, symmetry for the dipole moment opera-
tors by means of ITOs. As for Eq. (47), the TENSOR code was
used to convert the pj' components to the symmetry-adapted
ITO form

1y (@)ICs] = pi@t a)=py’ = gy PV, (53)
{i}
with I' = A, E. Our method allows building systematically
normal mode ITO models up to a given order, e.g., the sixth
order A, + E model both in (p, ¢) and (a*, a) representa-
tions. These algebraic transformations are quite involved but
straightforward leading finally to 34 466 symmetry allowed
terms in (a*, a) representation (53). We were able relating the
DMS d parameters as those given in the expansion (50) to the
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My ’s in Eq. (53) in an exact way, i.e., without any fitting pro-
cedure. As a illustration we give the exact expression of some
tensor operators as a function of the initial parameters. The
wi and p7' components can be cast into the form

(E.ADgA A A E(E)

@
1y =11 " Vi o) a

r () ALAD(ALE)A A A EE)
+ 1 V{(l) H(10),) a

x (1)1, EAD(ALE)S(A E) EEA,E(E)
127 Viao,)0,00) a

+ - (54)
and
(A, A),A A A A (A)
M — /1“1 H)V{(l) }0}1 1A a4y
(E.E),(A,A,A A (A)
+15 Vaopias,
(A, A)A A A A(A)
+IL2 (+)V(30) }{3} 1444
+ - (55)
with
o 1 3
wy = —=dey + —=dey 6p.60 T T =%a6a6a T
V2 23/2 24/2
X _ _g4
12 = 541 6a +
o 1
W3 = 7dapsaep = gaasver o
.1 1 3
my = Edl + mdl,ﬁa,ﬁa + mdl,l,l o
.1 1
My = Ed&z,(m + Edﬁb,ﬁh T+
., V3 V3
W3 =~ doasv.er ~ 4 Yeacasa

For the sake of simplicity, we have followed notations of
Ref. 25 by setting (I;m;) = (Im), if I; + m; > 0 and O other-
wise. Similarly, (A}, A;) was denoted by (A’, A); and omitted
itl, +m; +1 +m; =0.

IV. AB INITIO ROVIBRATIONAL SPECTRA
A. Energy level calculations

In order to compute vibration-rotation energy levels, we
need first to build a basis set by employing the same inner
coupling scheme than that of the Hamiltonian (47). The sim-
plest way consists in using direct product of 1D primitive
harmonic oscillator functions. The 9D vibrational primitive

. c .
functions CIDEJUL') are thus built as a tensor product of three one-
. . . . . A
dimensional harmonic oscillator functions CDE,i X (v, =1,2,3)

with three two-dimensional ones d>$f) (v, =4,5,6). For
J > 0, a set of rovibrational basis functions is obtained by
the coupling between vibrational and rotational functions

©)
“”)) , (56)

o

J.C) C,)
q)vMa=<q) ®(I)
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FIG. 2. One-dimensional PES cut along the bending coordinate component g5, for the Taylor expansions V (06) (dotted curve), V(014) (dashed-dotted curve)
and for the reduced 14— 6 (solid curve) potential. The original “ab initio” NRT potential (39) is given in dashed curve. It is seen that the reduction procedure
improves upon Taylor expansion pushing non-physical features beyond the dissociation threshold (see text).

where according to Eq. (46), the symmetry-adapted rotational
functions are constructed with the G coefficients. As already
suggested in previous works, only a limited set of primitive
functions is chosen through the cutoff criterium

FK(vmax) < Zkivi = Unmax» (57)

with v; =0, ..., v,,, and where «; are some weight coeffi-
cients. The latter ones are defined in a way to optimize the
number of stretching and bending basis functions. If all «;
equal to 1, the basis will be simply denoted as F(v,,,.). Al-
ternative “pruning schemes” for defining basis-sets have been
employed for example in Refs. 93-95.

An accurate global calculation of methane-type spectra
remains a challenge, both in terms of CPU time and compu-
tational memory but also for converging high-J rovibrational
states on a wide spectral range. In particular, the knowledge
and the determination of accurate eigensolutions is of prior
importance for predicting reliable line strengths. The main
limitations of the normal mode approach are mainly due
to (i) the drawbacks of the Taylor expansions for many
degrees of freedom with an exponentially growing number
of terms and (ii) the high dimensionality of the rovibrational
matrices as J increases, even if the molecular symmetry is
fully accounted for. In Refs. 25 and 29 we have proposed
two ways for minimizing the impacts of (i) and (ii) issues
by means of an efficient truncation-compression procedure
which aims at optimizing the cost of the computations. This
can be summarized as follows:

e Reduction-truncation of the Hamiltonian expansion.
For the consistency with previous calculations on methane,

the potential part as well the Watson term were first devel-
oped up to the order 14 in q while the reciprocal u tensor was
developed up to the order 8. The 8th order expansion of u
proved to be sufficient leading in fact to the maximum 12th
power of elementary vibrational operators in the vibrational
kinetic energy part . The effect of the truncation of the
u-expansion on the vibrational energy levels was studied in
details for '>CH, in Ref. 25. The same study was done for
12CH3D with the rms deviation between the contributions of
6th and 8th orders up to 5000 cm ™! less than 1073 cm~'. This
is clearly below the accuracy of the PES. At this stage the
full EWH HY9(p, q, J) contains more than 3 400 000 el-
ementary operators requiring a large amount CPU time for
the computation of matrix elements. This makes the prob-
lem intractable for large basis sets. To get around such dif-
ficulties, we have applied the reduction technique described
in Ref. 29 in order to transform the initial 14th order EWH
to a 6th order reduced Hamiltonian almost without degrad-
ing the accuracy. A technically efficient way to implement
this reduction is using the (a*, a) representation. The result-
ing Hamiltonian Hr(e](f _)6)(p, q, J) contains 32 461 elemen-
tary operators only. The computational demand is thus scaled
by 1:100 at this stage. In order to build the reduced ITO
form (47), only the 6th order terms were selected using the
second-quantization procedure. The resulting Hamiltonian fi-
nally contains 24 048 contributions in the tensor form, scaling
down the number of terms in the initial 14th order expansion
by a factor 1:140. In addition, this reduction technique based
on the construction of creation/annihilation operators helps
also avoiding certain problems of unstable behaviors inherent
to high order polynomials. This is illustrated in Fig. 2 where
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TABLE II. Convergence of the Hamiltonian for selected vibrational energy levels in the A, block using the F(8) basis for the 6th, 10th, 14th orders and for the
reduced 14th— 6th order. Rms deviations A (in cm™!) are given with respect to H(!¥.

Band, C H© HY HIO HIY AH(6) AH(14 — 6) AH(10)
001000 A, 1305.71 1306.78 1306.75 1306.80 1.09 0.03 0.06
010000 A, 2199.43 2200.05 2199.93 2200.01 0.58 —0.04 0.08
000002 A, 2312.62 2316.34 2315.83 2316.22 3.61 —0.12 0.40
002000 A, 2593.56 2597.77 2597.13 2597.57 4.01 ~0.20 0.4
000011 A, 2629.77 2633.39 2632.70 2633.24 3.47 -0.15 0.54
000020 A, 2908.32 2910.33 2909.95 2910.21 1.89 —0.12 0.25
100000 A, 2967.12 2969.77 2969.31 2969.74 2.62 ~0.03 0.43
000003 A, 3480.93 3487.03 3486.13 3486.89 5.96 -0.15 0.75
011000 A, 3497.49 3500.05 3499.73 3499.99 2.50 ~0.05 0.26
001020 4, 4211.07 4215.88 421529 4215.88 4.80 0.00 0.59
101000 A, 4266.84 4272.48 427131 4272.36 5.52 -0.13 1.04
020000 A, 4345.26 4345.94 4345.20 4345.32 0.07 ~0.61 0.12
000030 4, 4399.81 4405.27 4403.86 4405.09 5.8 ~0.19 1.23
010012 4, 5930.20 5939.92 5937.07 5939.31 9.1 —0.62 2.24
000200 A, 5979.68 5982.25 5981.95 5982.05 237 ~0.20 0.10

the reduced potential Vr(eld4_>6) allows diminishing the poly-

nomial degree and at the same time pushing away the non-
physical feature beyond the dissociation threshold'® (D, (exp)

= 39500 cm™'). Consequently, the use of y14=6

red
combining the accuracy of Vr(eld4) at the bottom of the potential

well with a better behavior at large nuclear displacements.

Using the basis set (56) and the Wigner-Eckart theorem,
the matrix elements are calculated analytically in a very fast
way. In Table II, we give the convergence of some selected
vibrational energy levels with respect to the Hamiltonian ex-
pansions H®, H1O H and Hr(e];_)@ using the F(8) basis.
Table II clearly shows that the reduced 14 — 6 model
is an optimal compromise concerning the ratio Number of
terms/Accuracy. This procedure introduces very small errors
with respect to the full H'¥ calculations (see the three last
columns of Table II).

e Basis set compression. A common challenge in all
variational methods for polyatomic molecules is an optimal
choice of a limited physically justified subset of vibrational
basis functions in order to reduce the cost of calculations.
At the same time, one seeks avoiding a loss of accuracy
as much as possible. Various techniques of basis truncation-
compressions are applied in the literature.2%2%352-64.96.97 Ip or-
der to optimize variational computations of rotation-vibration
states, we apply the basis set compression using the vibra-
tional subspace (VSS) approach, which in our implementation
can be summarized as follows. Let first solve the pure vibra-
tional stationary Schroedinger equation H,W, = E W, using
a largest primitive basis set subspace defined by Eq. (57),
say F(n) with n =v,,,,, which is feasible using currently
available computational facilities. The resulting anharmonic
eigenfunctions are obtained and stored as a combination of
uncoupled primitive functions denoted as W." = 3" 7o 6 Py

allows

with the corresponding eigenvalues E™. For example, for
purely vibrational part in the case of E block, the number
of terms in this expansion for n = v,,,, = 10 in our vibra-

tional calculations was 30 786. This means that in case of
vibration-rotation calculations, both the number of basis func-
tions (56) and of terms (43)—(49) in the Hamiltonian rapidly
increases resulting in a gigantic set of elementary matrix ele-
ments (®,| V(a™,a) | ;) to compute. Even though these lat-
ter ones are calculated analytically, the rovibrational compu-
tations for high J values could become excessively demand-
ing in terms of memory and CPU time. In our VSS approach,
we compress the basis set in two steps. As a first step we
choose a subspace of primitive functions F(r) C F(n) corre-
sponding to v,,,. = r < n, for which vibration-rotation cal-
culations are feasible. Then the large basis-set vibrational
eigenfunctions v € F(n) are projected onto the reduced
subspace F(k) and ortho-normalized using a Gram-Schmidt
procedure. The resulting set of anharmonic vibrational func-
tions is called reduced coupled basis set {W."~"}. Schemati-
cally, we have

GPOWM = Wi e F(r), (58)

where P is a projector onto the F(r) subspace and G is
the Gram-Schmidt transformation. The second basis com-
pression step is obtained by applying the maximum vibra-
tional energy cutoff E{” < E™4¥ to the array (ED, Wi,
The resulting set of vectors is used to build the full rovi-
brational Hamiltonian matrix by forming the direct product
T =W " @I, where I, is the identity matrix in the
rotational subspacé. The Hamiltonian matrix in the vibra-
tional eigenbasis simply reads

H=THT=E, 1,3, +H (59)

v’ TV

with
HFU = TthFUT’ (60)

where h, is the rovibrational Hamiltonian matrix built in the
initial primitive basis set (56). We can then reduce our rovi-
brational calculations using three cut-off criteria: n and r for
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uncoupled subsets and E}3" for the coupled subset. The vi-

brational energy calculations EM are ideally converged at
n — oo that is not of course directly accessible, but one
could replace EW by ES in Eq. (59) when available. If
ES ~ ESs this makes physically meaningful empirical band
centers corrections to ro-vibrational variational calculations.
In this case both vibrational wave functions {"~" and all ro-
vibrational matrix elements H,, in Eq. (59) are still directly
computed from ab initio PES, but ro-vibrationals eigenvalues
and eigenfunctions are better described. This could result then
to better predictions of accidental ro-vibrational resonance
perturbations in spectra. Alternatively, on could compute bet-
ter values of EJ” using isotopic shifts. The reader can find
related illustrations in our previous studies®*3° devoted to the
tetrahedral methane isotopologues '*CH,, '>CD,, and '3CH,.

As a simple illustration, we have computed the J = 1,
A, rotational energy levels for the bands v(E), v, + ve(E),
and v, + 2v5(A,) centered at 1161, 3342, and 5925 cm~! us-
ing the set of eigenvectors {\11(6) Wi, \Il(lo_)ﬁ)} For these
three bands, the errors AE = E’ (101) E’ (6)1 are, respectively,
{0.0005, 0.0018, 0. 0306} whereas the errors for the com-
pressed basis AE = \1/“"’ Ej(,ol%, are {0.0000, 0.0003,

0.0024}. We see that W' and \IJ(IOH@ give similar results
while the size of the basis is reduced from 45 000 to 2370.
In Table III, we give the convergence of the vibrational en-
ergy levels as a function of the basis set size. We have con-
sidered F(8), F(9), F(10), and F,(12) primitive basis sets. If
all k; = 1, the F(12) basis would require a large amount of
memory for storing matrix elements since the size of the £
block is ~100 000. In what follows, we thus fix k, = 1.05
with the normal mode quantum number v, belonging to the
range vy € {0,1,...,11} and «; = 1 for all other modes.
This choice is motivated by the fact that the v, mode has
the highest frequency and only its second overtone have to
be converged up to 8000 cm™'. For each basis, the size N of
the three blocs J = 0 are also specified in this table. CH;D
band centers given in Table IV correspond to our direct vari-
ational calculations (TW) from NRT PES without any em-
pirical corrections. In a general manner, our calculations are
in very good agreement with experiment. It is also instruc-
tive to compare our predictions with the calculations resulting
from the effective Hamiltonian (EH) empirical fit of Ref. 50:
second column of Table IV. The vibrational shifts A, = Obs-
TW we use for the band center corrections E,(J") = E%5 in
Eq. (59) are those given in the sixth column of Table IV and
will be applied in what follows for the VSS procedure. At
the next step the primitive F, (12) basis is used to construct
the reduced anharmonic basis functions \Ill()mﬁ” to compute
vibration-rotation line positions and intensities.

B. Line strength calculations

The infrared line intensity S; of a rovibrational transi-
tions v; between an initial state / and a final state j for a given

temperature 7 in units [cm™!/molecule cm™2] is given by

8 310736

—c,E./T =, /T
L. V. 25i 1 — ij X R,
U7 3heQ(T) Iogc,vije ( ) i

(61)
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where ¢, = hclk, g~ and E; are the nuclear spin statis-
tical weight and the 'energy of the lower state and Q(7)
is the partition function. The same units are used in the
HITRAN spectroscopic line list compilations. For 12CH3D
one has g =4 and the partition function taken from HI-
TRAN are’Q = 47749815 at T = 296 K. The terrestrial
isotopic abundance of '*CH;D is I, = 0.000615751. R;;
corresponds to the square of the transition-moment matrix

elements
Rij = Z ‘(q;
MM,

where the summation is over all magnetic sublevels of both
initial and final states and W are the eigenfunctions of the
ro-vibrational Hamiltonian. In Eq. (62), ug (© = X, Y, 2)
are the space-fixed electric dipole moment components and
are related to molecule-fixed dipole moment components
(53) as

2

J.,C. ..C)
;6 AN , (62)

v.,M.,(r,|'u"®‘\Ijv.,M..av>
[ PP

S\ (A)
wy = M2 (XD g )™ (63)

(1,.K.I") . . .
where C, * =LA,y = C,, are the direction cosines; I"

=A,, E and = A,, E. Due to the isotropy of the 3D space,
only the Z component is necessary: R;; = 3Rle

V. RESULTS: COMPARISONS WITH THE HITRAN
2012 SPECTROSCOPIC DATABASE

There exist several sources of ?CH;D data essentially
based on raw experimental spectra or line-by-line analyses
provided from empirical models.>**>° Though 12CH3D is
of major importance in the determination of the H/D ratios in
planetary atmospheres, it has been much less studied than the
major isotopologue '?CH,. This is partly because its polyad
structure is quite different from that of methane leading to
various types of the resonance coupling of vibrational sub-
bands in spectra. For 2CH, there exist a remarkable relation
between stretching and bending harmonic frequencies (v,
A w3 X 2w, ~ 2w,) while a similar relation is only partly
valid for '>CH;D. For instance, by using Eqs. (16)—(18) the
polyad number can be expressed as follows:

Pey, = 2w + 03) + 0, + o,
v (64)
Pep,p ¥ 2(@) + @) + 1450, + w3 + w5 4 0.8wg.

According to the harmonic frequencies given in Table I, the
polyads thus cover large spectral ranges and the gaps be-
tween them are relatively small compared to methane. The
very clear polyad structure of methane CH, is broken by the
isotopic substitution H — D as the frequency of the heavy
C-D bond goes down with respect to the light C—H bonds.
This leads to an overlapping of “classical” polyads and to
a different scheme of resonance couplings. For high energy
ranges vibrational levels fill all spectral regions and the def-
inition of polyad is ambiguous. Note that the polyad scheme
(64) is well adapted for building so-called effective Hamilto-
nians. However, it was shown in Table V of Ref. 67 that the
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TABLE III. Comparison of CH;D vibration level calculations for various basis sets. (a) Zero point energy values (in cm™!) and basis size. (b) Convergence

of the vibrational energy levels (in cm~') using the Hamiltonian reduction model

H1%~6 and the F(8), F(9), F(10), and F, (12) (x, = 1.05) basis sets.

red

(a)

Block F(8) F(9) F(10) F .(12)

NA[ 4426 8698 16306 32737

NAz 3684 7522 14500 29461

Ng 8100 16200 30786 62163

ZPE 9078.436 9078.431 9078.430 9078.430

(b)

Band, C F(8) F©) F(10) F (12) AF(12—8)* AF(12-9) AF(12—10)
000001 E 1161.02 1161.02 1161.01 1161.01 —0.01 —0.01 0
001000 A, 1306.78 1306.78 1306.77 1306.77 —0.01 —0.01 0
000010 E 1472.03 1472.03 1472.03 1472.02 —0.01 —0.01 —0.01
010000 A, 2200.05 2200.02 2200.01 2200.01 —0.04 —0.01 0
000002 A, 2316.34 2316.24 2316.23 2316.22 —-0.12 —0.02 —0.01
000002 E 2323.27 2323.18 2323.17 2323.16 —0.11 —-0.02 —0.01
001001 E 2465.62 2465.51 2465.50 2465.49 —0.13 —-0.02 —0.01
002000 A, 2597.77 2597.65 2597.63 2597.62 —0.15 —-0.03 —0.01
000011 E 2623.55 2623.46 2623.45 2623.44 —0.11 —-0.02 —0.01
000011 A, 2633.39 2633.30 2633.28 2633.28 —0.11 —0.02 0
000011 A, 2634.98 2634.88 2634.87 2634.87 —0.11 —0.01 0
001010 E 2776.52 2776.42 2776.41 2776.40 —0.12 —0.02 —0.01
000020 A, 2910.33 2910.26 2910.25 2910.24 —0.09 —0.02 —0.01
000020 E 2940.31 2940.22 2940.21 2940.20 —0.11 —0.02 —0.01
100000 A, 2969.77 2969.68 2969.66 2969.65 —0.12 —0.03 —0.01
000100 E 3016.78 3016.72 3016.70 3016.69 —0.09 —0.03 —0.01
010001 E 3342.63 3342.38 3342.34 3342.32 —0.31 —0.06 —0.02
000003 E 3472.24 3471.64 3471.50 3471.47 —0.77 —-0.17 —0.03
000003 A, 3487.03 3486.42 3486.30 3486.28 —-0.75 —-0.14 —-0.02
000003 A, 3487.38 3486.78 3486.66 3486.64 —-0.74 —-0.14 —0.02
011000 A, 3500.05 3499.77 3499.72 3499.70 —0.35 —0.07 —0.02
000101 A, 4175.45 4175.02 4174.95 4174.92 —0.53 —0.1 —0.03
001020 A, 4215.88 4215.44 4215.35 4215.32 —0.56 —0.12 —0.03
001020 E 4242.82 424231 4242.18 4242.16 —0.66 —0.15 —0.02
101000 A, 4272.48 4271.92 4271.80 4271.76 —-0.72 —0.16 —0.04
001100 E 4313.52 4313.05 4312.97 4312.94 —0.58 —0.11 —0.03
020000 A, 4345.93 4344.79 4344.56 4344.45 —1.48 —0.34 —0.11
100010 E 4357.44 4357.06 4356.98 4356.95 —0.49 —0.11 —0.03
000030 A, 4403.60 4403.11 4403.00 4402.98 —0.62 —-0.13 —0.02
000030 A, 4405.27 4404.77 4404.66 4404.64 —0.63 —-0.13 —0.02
000030 E 4440.80 4440.22 4440.09 4440.06 —-0.74 —0.16 —0.03
010012 A, 5937.87 5935.86 5934.66 5934.30 —3.57 —1.56 —0.36
010012 E 5939.81 5936.75 5935.43 5934.96 —4.85 —-1.79 —0.47
010012 A, 5939.92 5937.84 5936.66 5936.29 —3.63 —1.55 —0.37
001004 E 5952.67 5947.84 5946.31 5945.63 —7.04 —221 —0.68
010012 E 5965.32 5962.28 5961.13 5960.67 —4.65 —1.61 —0.46
000200 A, 5982.25 5980.90 5980.55 5980.44 —1.81 —0.46 —0.11

2AF(12 — k) is the discrepancy (in cm™") of calculated levels using F(12) and F(k) basis sets.

F, (v,,,,) pruning scheme allows more flexible optimization
of variational calculations. Moreover, the symmetry is lower
and as a direct consequence some degeneracies are removed
due to the isotopic substitution (see Eqgs. (Al) and (A3), for
instance) and the number of levels in the harmonic approxi-
mation is larger. The first interacting band system is the Triad
(v3, Vs, V) which corresponds to the Dyad of methane while

the next one called Nonad (v, v,, v5, 2v5, 2vs, 2V, V5 + Vs,
V3 + Vg, Vs + Vg) corresponds to the methane Pentad. The
current analyses* of >)CH,D are focusing on the so-called
Enneadecad region involving 19 interacting states and some
additional ones, which roughly speaking could be considered
as a counterpart of the Octad (2.1-2.8 um) for 12CH4. How-
ever, it turns out that some additional bands coming from the
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TABLE IV. Comparison of variational predictions for 12CH3D band centers (TW) with vibrational levels deduced from experimental spectra and with effective
Hamiltonian (EH) fits. Selected vibrational band centers of 12CH3D computed variationally with the F, (12) («, = 1.05) basis and using the ITO normal mode

Hamiltonian reduction model Hr(el: =9 (This Work, TW), compared to experimental values

41,42,44,45,50

and to those of Ref. 50 obtained from an empirical

model. (Note: TW (this work), computed from NRT methane PES. Obs: experimentally deduced values.#1+42:44.45.50 BH: (Calc. 11, Table 12 of Ref. 50)
calculations using effective Hamiltonian empirical fit. All values are in cm™~!.)

Band, Sym EH.0 W Obs. TW-EH.? Obs.-TW Obs.-EH.Y
ve E 1160.74 1161.01 1161.10 0.27 0.09 0.36
v A, 1307.48 1306.77 1306.85 —0.71 0.08 —0.63
vs E 1472.16 1472.02 1472.02 —0.14 0.00 —0.14
v, A 2199.08 2200.01 2200.04 0.93 0.03 0.96
2vg A, 2316.37 2316.22 2316.27 —0.15 0.06 —0.10
20, E 2322.44 2323.16 2323.29 0.72 0.13 0.85
v+ v E 2465.14 2465.49 2465.46 0.35 —0.03 0.32
2v; A, 2598.57 2597.62 2597.69 —0.95 0.06 —-0.88
s+ vg E 2623.13 2623.44 2623.44 0.31 0.00 0.31
Vs + Vg A, 2633.37 2633.28 2633.16 —0.09 —0.12 —0.21
v+ vg A, 2634.87 2634.84 —0.03

vy 4 s E 2776.73 2776.40 2776.29 —0.33 —0.11 —0.44
205 A, 2910.01 2910.24 2910.12 0.23 —0.12 0.10
2vs E 2940.25 2940.20 2940.10 —0.05 —0.10 —0.15
v, A, 2969.49 2969.65 2969.51 0.16 —0.14 0.02
v, E 3015.90 3016.69 3016.71 0.79 0.02 0.81
v, + v E 3342.24 3342.32 3342.57 0.08 0.25 0.33
3v, E 3471.66 3471.47 3471.47 —0.19 —0.01 —0.19
3vg A, 3483.79 3486.28 3486.45 2.49 0.18 2.66
3vg A, 3486.64 3486.72 0.08

v, + V3 A, 3499.25 3499.70 3499.72 0.45 0.02 0.47
vy + 206 A, 3617.71 3617.19 3616.80 —0.52 —0.39 —0.91
vy, + 2 E 3623.77 3625.26 3625.01 1.49 —0.25 1.24
v, + Vs E 3667.72 3668.07 3668.08 0.35 0.00 0.36
20, + v E 375274 3754.19 3753.88 1.45 —0.30 1.14
Vs + 2v6 A, 3775.36

vs 4 2v6 A, 3775.05 3776.58 1.52

Vs + 2v4 1E 3778.91 3780.01 3779.76 1.10 —0.25 0.85
Vs + 2vg 2E 3794.53 3797.26 272

3v, Al 3874.39 3874.86 3874.74 0.47 —0.12 0.35
vyt vs + g E 3924.62 3925.58 3925.20 0.96 —0.38 0.58
vy 4 Vs + v A, 3935.48 3935.69 3935.25 0.21 —0.44 —0.23
vy +vs + v Ay 3936.70 3936.27 —0.44

2vg + vy 1E 4059.68 4058.88 4058.69 —0.80 —0.19 —0.99
20, + V5 E 4066.73 4067.99 4067.85 1.26 —0.14 1.12
2v5 4+ Vg A, 4081.44 4081.59 4081.33 0.14 —0.25 —0.11
205 + vg A, 4082.88

2vg + vg 2E 4101.02 4102.81 4102.44 1.79 —0.37 1.42
v, + v E 4122.10 4122.72 4122.59 0.62 —0.13 0.49
v+ Vg A, 4164.18 4163.18 4163.49 —1.00 0.31 —0.69
v, + v E 4170.50 4170.08 —0.42

vyt Vg A, 4174.92

vy + 205 A, 4214.98 4215.32 4215.29 0.34 —0.03 0.31
vy + 205 E 4241.92 4242.16 4241.74 0.24 —0.42 —0.18
v+, E 4312.86 4312.94 4313.42 0.08 0.49 0.56
2v, A, 4342.27 4344.45 4344.12 2.18 —0.32 1.85
3vs E 4356.27 4356.96 4356.89 0.68 —0.07 0.62
3vs A, 4402.98

3vs A, 4404.27 4404.64 4404.36 0.37 —0.28 0.09
v+ E 4440.71 4440.06 4439.73 —0.65 —0.33 —0.98
vyt vs A, 4471.41

v+ Vs E 4472.63 4472.42 4472.65 —0.22 0.23 0.02
v, + 206 A, 4486.76 4484.82 4484.82 —1.94 0.00 —1.94
v, + Vs E 4486.34 4486.73 4486.88 0.39 0.15 0.54
4ve A, 4619.24 4618.71 4618.45 —0.53 —0.26 —0.79
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Band, Sym EH.% ™™ Obs. TW-EH.% Obs.-TW Obs.-EH.%
4vg 1E 4625.31 4627.07 4626.92 1.76 -0.15 161
vy + vy + Vg E 4639.33 4639.86 0.52

vy + 30 E 4769.92 4769.42 —0.50

vy +3vg A, 4782.83 4781.54 4781.53 —0.50 0.02 —-127
vy + 3vg A, 4785.95

v, +2v5 A, 4782.04 4786.73 4.69

v, +vs+ Vg E 4801.10 4800.53 -0.57

v, +vs +vg A 4811.54 4811.24 4811.17 —0.30 -0.07 -037
v, +us + v A, 4812.72

2vy + 206 A, 4901.65 4903.18 4901.42 1.53 -1.76 -023
2v, +2v, E 4907.72 4912.03 431

vs + 3vg IE 4924.76 4925.93 117

Vs + 3v6 2E 4926.63 4929.96 333

vs 4 3vg A 4935.11 4935.20 4934.51 0.09 —0.69 —0.60
vs +3v6 A, 493834

vs + 3vg 3E 4955.70 4961.53 5.83

vy + vy +vs E 4964.98 4965.49 0.51

3v;+ 1 E 5027.40 503033 2.93

vyt vs + 206 A, 5075.53

vy 4 vs + 206 A 5073.48 5076.29 2.81

vy + s + 206 1E 5077.57 5079.02 1.45

vy + vg + 2v 2E 5093.61 5096.86 325

vy + 205 A 5103.53 5103.71 5103.57 0.18 -0.14 0.04
v, +2v5 E 513229 5132.26 5132.10 —0.03 -0.15 -0.19
4vy A 513470 5139.32 4.62

v+, A 5164.53 5165.19 5165.05 0.66 -0.15 0.52
203+ s+ v E 5206.68 5207.25 0.57

2v5 + 2v 1A, 5206.55 5209.05 250

rms 1.69 0.33 0.88

Tetradecad of methane have to be included in the Ennead-
ecad to take into account more resonance terms in effective
Hamiltonian models. This issue will be discussed in a forth-
coming paper. For this work, the major advantage of global
variational calculations combined with a symmetry-adapted
model is that all interacting terms are inherently considered.
They are essential to correctly model intensity transfers due to
accidental resonances. For the calculation of the energy lev-
els, we proceed exactly in the same manner as for our previ-
ous works on methane. As the size the basis set rapidly in-
creases with J, the rovibrational problem is partitioned into
three parts. Starting from the reduction of J = 0 eigenfunc-
tions \I-Q()uﬁ’) , the rovibrational calculations were carried out
with r =7 for1 <J <6, withr=6for7 <J <15
and with r = 5 for 16 < J < 15. The vibrational energy
cut-off energy E7'¢* was applied to choose approximately
80% of the eigenvectors during the VSS process. This cor-
responds to E™* = 12400 cm~!, 10750 cm™!, and 9200
cm™~! for these three ranges of quantum numbers. The largest
bloc to be diagonalized in this work corresponds to (J, C) =
(15, E) with the (12 — 6) eigenfunction reduction. Its size
is 51 715 that reduced to 41 042 when applying the VSS
procedure.

To validate our results both for positions and intensities,
all present calculations were compared to the last release of
HITRAN2012 database*® at T = 296 K. This HITRAN list is

essentially a compilation of lines which come from (i) spec-
troscopic analyses using empirically-fitted effective models
(<4500 cm™") and (ii) the WKLMC*® experimental line list
(>6000 cm™1). In the first case, the included lines are fully

First order Q expansion f{
* Fourth order Q expansion
- HITRAN i

Absorbance

d

2555 2560 2565 2570 2575
cm!

FIG. 3. Convergence of calculated line intensities of 12CH3D (positive axis)
in the 2v;(A;) region with respect to the order of the pox;ver series (35) in
comparison with HITRAN 2012.% The first order expansion corresponds to
the rectilinear approximation (15).
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FIG. 4. Overview spectrum of ]2CH3D from 0 to 8000 cm~!. Comparison
between first principles calculations (this work) and the HITRAN 2012 em-
pirical database at T = 296 K in log scale. The theoretical line list contains
over 2 000 000 transitions with J, = 25 up to a lower state energy E;  of

4000 cm™"' and with a intensity cutoff of 7, x 10727 cm/mol. HITRAN 2012
contains 50 550 lines.
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FIG. 5. Comparison of the 12CH3D spectrum in the triad (upper panel) and
nonad (lower panel) regions between variational calculations and HITRAN
2012 at T = 296 K. The spectra were computed with a line profile at a reso-
lution of 0.001 cm~! and band centers were shifted in the VSS procedure by
A, (see column 6 of Table IV).
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FIG. 6. Comparison of the spectrum in the third polyad region of 12CH3D
between variational calculations and HITRAN 2012 at T = 296 K. The spec-
tra were computed with a line profile at a resolution of 0.001 cm~! and
band centers were shifted in the VSS procedure by A = (see column 6 of
Table TV).
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FIG. 7. Comparison for detailed portions of the absorption spectra of
12CH3D between variational using ab initio DMS and HITRAN 2012 at T

=296 K. Spectra simulations use line profile at a resolution of 0.001 cm ™.
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FIG. 8. Comparison for detailed portions of the absorption spectra of

12CH3D between variational using ab initio DMS and HITRAN 2012 at T

=296 K. Spectra simulations use line profile at a resolution of 0.001 cm™~".

assigned. In the second case, only some lower state energies
obtained from the two-temperature method relaying on an
extraction of the Boltzmann factor from measured line
strengths have been provided. Before making direct compar-
isons we have first studied the convergence of line inten-
sities with respect to the truncation order of the power se-
ries (35). This latter expansion is used for converting the T,
methane dipole moment expansion (50) into forms (52) and
(53) adapted to ">CH;D. The convergence is well illustrated
by Fig. 3 in the 2v;(A,) region where the first order recti-
linear approximation in normal coordinate transformations,
Eq. (35), and the fourth order one are considered. We clearly
see that keeping only linear terms in Eq. (35) is not suffi-
cient to obtain accurate results in this region while the fourth
order expansion gives a good agreement. In a general man-
ner our calculations suggested that the second order expan-
sion in (35) was sufficient and gave results similar to that
obtained from order 4, at least for the spectral range con-
sidered in this work and for medium and strong lines. But
to keep security margins in our calculations, the power se-
ries (35) was truncated at the fourth order in ¢ transforma-
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FIG. 9. Comparison of detailed portions of the absorption spectra in the re-
gion of 3v, between variational calculations using ab initio DMS and HI-
TRAN 2012 at T = 296 K. Spectra simulations use line profile at the resolu-
tion of 0.1 cm™!. The band center was shifted to that of Ref. 50.

tions during this work. Fig. 4 gives a bird’s-eyes overview
of the absorption "?CH;D spectra up to 8000 cm™! in log
scale. It shows a very good qualitative agreement between
our variational calculations and HITRAN2012% for the sub-
set of lines present both in theoretical and in empirically-
derived lists. It is seen that our list contains much more
information above 4500 cm~'. This missing information is
expected to be crucial for the quantitative modeling of vari-
ous planetary atmospheres. Our final room-temperature line
list in the range [0-8000] cm™! contains over 2 x 10° lines
calculated at J,,. = 25 up to a lower state energy E,, , of
4000 cm~! and with a intensity cutoff of 7, x 107" cm/mol.
Up to the Enneadecad region (<5000 cm™1), our list contains
987 000 lines composed of 272 000 cold band and 715 000
hot band transitions, for this latter case essentially for Triad-
Triad and Nonad-Triad-type transitions. Figs. 5-8 show an
absorption spectra in comparison with HITRAN in the Triad,
Nonad, and Enneadecad regions while Fig. 9 gives a compar-
ison of low resolution spectra in the 3v, region. In particu-
lar, Fig. 6 shows that the HITRAN database is not complete
and that much more line-by-line analyses are necessary to fill
empty regions. We hope that this work would help resolving
this issue by providing a complete set of missing information
for room- and cold-T conditions. The complete line list of
2CH;D up to 5000 cm™! with a intensity cutoff of 7, x 102
cm/mol and composed of ~180 000 transitions is provided in
the supplementary materials.®’

VI. CONCLUSION

In this work we have presented global calculations

r 12CH3D based on (i) accurate ab initio calculations,
(ii) symmetry and coordinate transformations, and (iii) a sys-
tematic theoretical procedure for solving the nuclear motion
problem. For the very first time for a penta-atomic
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symmetric-top molecule, ab initio predictions are in excel-
lent quantitative agreement with the HITRAN database in
the range corresponding to line-by-line analyses. Moreover
global predictions can provide complementary information to
existing databases in the regions above 4500 cm™! where few
studies exist. This could certainly help resolving many issues
related to assignments of observed spectra. To conclude, this
work is a big step forward to build future low, medium, and
hot temperature synthetic line lists which will be important for
modelling, for example, the Titan’s atmosphere or the opacity
in atmospheres of exoplanets.

ACKNOWLEDGMENTS

Support for this work was provided by IDRIS computer
centre of CNRS, CINES computer centre of France as well
as the Romeo computer centre Reims-Champagne-Ardenne.
This work has been partly supported by French-Russian col-
laboration project SAMIA, by the methane project of French
“Programme National de la Planetologie,” by visiting pro-
gram of Reims University as well as by Tomsk State Univer-
sity Competitiveness Improvement Program.

APPENDIX: T, < C,, AXIS SWITCHING FOR CH,

Although it may not seem natural it is technically conve-
nient to treat XY, molecules as Cj, species. In that case we
do not keep advantage of the full symmetry but this allows
to consider a unified treatment of both XY, and XY;Z-type
molecules in relation with isotopic substitutions. As stated in
Sec. II the passage from T, to C;,, is not direct because of dif-
ferent conventions for the molecular axis system. For T, the
quantization axis (Oz) is taken as one of the S, axes while
for C,, the (Oz) axe coincides with the C; axis along the X
— Z bond (where the XY; group rotates). This transformation
is thus carried out by two successive rotations, explicitly ex-
pressed by the rotation matrix R(2) = R(Z, cos™! %, 0) in
Egs. (8)—(68a) of Ref. 98. Consequently, we can link together
the molecular frame components of the total angular momen-
tum by

Td C3v
(F)) (E)
J! Jya
GON o 1 ’ (AD
Jy A | x,b
JF) g
z z
where
e _1 b
V2 V6 3
1 1 1
Ry=|—% % & (A2)
2 1
O % &

J. Chem. Phys. 141, 044316 (2014)

The symmetry coordinates are also transformed as S«
= US» or more explicitly as

Td C3v
R
s s
S s
ngz) Sif)
s | =ts | s© (A3)
5, S8
| [
ng) SE)
sw) s
with
Lol 0o 0 0 0 00
0O 00 0O O O 0 10
0O 00 0 O O 0 01
_%5 0o 1 «/LE _\/LE 0 0 00
U = -2 04 £ K 0 o0 00
-2 04-% 0 0 0 00
0 % 0 0 0 —\/La % 00
0 % 0 0 0 —ﬁ —% 00
0 % 0 0 0 %a 0 00
(Ad)

So the PES for methane can be expressed in terms of
C;, symmetry coordinates when dealing with XY ;Z isotopo-
logues. According to the relation (13) we can also derive a
very useful relation,

XTd — (L;d)_luSLs3vXC3” = qucM’ (AS)
where X can be, for example, the vectors q, a or a™. The “g”
index means that we work with dimensionless coordinates
that is [S"],.., = L,q". As a simple application, for XY,

rect
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molecules we have the following T; —C;, transformation:

0 0 0 0 0 1.0 0 0
0 0 0 0 0 01 0 0
%00%—%000 0

%2%00%%000 0
%00—%0000 0
00%0 000‘%%
00%0 000—%—%
0% 000% 0

(A6)

Using Egs. (Al), (A3), and (A6) the T, normal mode
Hamiltonian can be formulated in the C,, point group and
further converted into the ITO formalism through a six-
mode tensor coupling scheme. Note that the passage in C| is
straightforward accounting for the group-subgroup irrep re-
duction (A}, E,) - (A’,A’) and (A,, E,)) — (A", A").

As previously mentioned most of the currently published
variational computer codes do not use the full 7, symmetry
point group for dealing with methane-type molecules. Strictly
speaking only one of its subgroup is employed and thus cal-
culations could be more demanding. For example, our Con-
tact Transformation procedure®® which was recently applied
for '2CH, was not originally implemented in the tetrahedral
ITO formalism. Consequently the resulting ab initio effective
Hamiltonian was not directly compatible with available com-
putational programmes” of the spectra analyses and experi-
mental fitting written in the ITO formalism. Using the trans-
formations described in this paper, we are now able convert-
ing any rotation-vibration operator of methane isotopologues
into a symmetry-adapted form. As a simple illustration we
give the correspondence between the C;, components and the
T, ITOs of Ref. 25 for two operators,

2 2 1
(E)] } \/jV(A) (E)
a — V4 —=V
(T, =i 5

3v

2
+3 (V(F) + v - “”) (A7)
where using the nomenclature of Ref. 25:
(A,A),A A A A (A)
ve V (2) } 1
(A,E),A EA E(E)
v =V 0@ 1 (A8)
(F) (A, F)),A, F,A F,(F,)
Voo = Va0
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1 5 1
S Lpe (T(F) N TI(F) <F,)>

3 33 51
! (Fy) )y ] 70 (F)
e (1 -7 )+6( +1," —2m")
(A9)
with
©
o = (i 0 )
o
. Al10
F) (A;A),A A A A (A) 1(1,F,) ) ( )
Ty _(V{O}{a)} ® R ")
4 o

Such relations are useful in the derivation of Hamiltonian or
dipole moment operators.
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