Radiation Curing: Coatings and Composites

Anthony J. Berejka, Ionicorp+, USA
Daniel Montoney, Strathmore Products, USA
Marshall R. Cleland, IBA Industrial, Inc., USA
Loïc Loiseau, IBA Industrial, Belgique

Polyray 2009
Universite de Reims
19 mars 2009
Reims, France
Industrial Electron Beam Markets

- WIRE
- CABLE
- TUBING
- SURFACE CURING
- TIRES
- SHRINK FILM
- OTHER
- SERVICE

>1400 high current EB manufacturing installations
Electron Beam Parameters

Voltage = Electron Penetration
 = Thickness Penetrated

Amperage = Beam Current
 = Exposure Intensity

Kilowatts = Megavolts x Milliamps
 kW = MV x mA
EB Market Segments Require Different Energies

<table>
<thead>
<tr>
<th>Market Segment</th>
<th>Electron Energy</th>
<th>Typical Penetration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface Curing</td>
<td>80 – 300 keV</td>
<td>0.4 mm</td>
</tr>
<tr>
<td>Shrink Film</td>
<td>300 – 800 keV</td>
<td>2 mm</td>
</tr>
<tr>
<td>Wire & Cable</td>
<td>0.4 – 3 MeV</td>
<td>11 mm</td>
</tr>
<tr>
<td>Sterilization</td>
<td>3 – 10 MeV</td>
<td>38 mm</td>
</tr>
<tr>
<td>Composites</td>
<td>10 MeV</td>
<td>24 mm</td>
</tr>
</tbody>
</table>
80 - 120 keV Development Unit
Low-voltage EB Pilot Line

300 keV self-shielded EB unit for crosslinking film or surface curing
Low-voltage EB Equipment

300 keV self-shielded EB unit for crosslinking film or surface curing
Industrial Electron Beams

5 MeV, 300 kW

10 MeV, 200 kW
X-ray Conversion

Scan Horn

X-Ray Conversion Target

X-Ray Field

Relative Field Intensity
X-ray Depth of Penetration

Dose (kGy) vs. Depth in cm x density, g/cc

- 10 MeV electrons
- 5 MeV X-Rays
- 7.5 MeV X-Rays
Unipolis 10 MeV EB/X-ray Facility
RDI Studies – late 1960s

Walter Brenner and Marsh Cleland
5 July 2005
ADVANTAGES OF RADIATION CURING

Room Temperature Cure
 • Stress-Free Joints.
 • No Thermal Distortion

Saves Energy
 • Eliminates need for Autoclave.

Avoids Air Pollution
 • Solvent is Cured as Part of Resin.
 • No Volatile By-Products.
Surface Tension Tests

Control of water = high contact angle

EB formulation = low contact angle
Surface Tension Tests

Surface Tension, dynes

EB curable coating binders
VARTM with HDPE Platens

Carbon fiber twill sealed in between platens
VARTM with PC/HDPE Platens

Carbon fiber twill sealed in between platens

Wetted carbon fiber
EB/X-ray Cured Sample
Solubility EB/X-ray Cured Samples

~2g resin sample immersed in methylene chloride for ~16 hours

X-ray cured

EB cured

Gel content, %

Dose, kGy
EB Coating Flexibility

Mandrel Bend

0-T Bend
Toughness Testing

Falling tup impact testing:
Eight ply carbon fiber composite matrix with impact additive
Toughness/Impact Testing

Four ply carbon fiber composite and aluminum test panel of comparable thickness: impacted at 13.6 N-m
Properties Six Ply Carbon Fiber Reinforced Composites

<table>
<thead>
<tr>
<th>X-ray cured in mold at 24 kGy</th>
<th>Initial fracture of matrix</th>
<th>Izod Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>bis-phenol-A diacrylate</td>
<td>6.8 N-m</td>
<td>901 J/m</td>
</tr>
<tr>
<td>matrix system – no impact additive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bis-phenol-A diacrylate</td>
<td>15.8 N-m</td>
<td>1043 J/m</td>
</tr>
<tr>
<td>matrix system – with impact additive</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Developing Molecular Structures

Molecular weight, M_n, and molecular weight between crosslinks, M_c, is important.
Developing Molecular Structures

Conventional bis-phenol-A diacrylate

Multiple suppliers, used in radiation curable coatings
Microphase Understanding

Intra-molecular impact additive

Inter-molecular impact additive
Microphase Understanding

Intra-molecular impact additive

Inter-molecular impact additive

SEM to same µm scale
Microphase Understanding

SEM μm scale
amine cured epoxy

AFM nano scale gel
UV cured epoxy diacrylate
Thermal Analysis Resin Systems

<table>
<thead>
<tr>
<th>Resin System</th>
<th>DSC Tg</th>
<th>TMA Tg</th>
</tr>
</thead>
<tbody>
<tr>
<td>X-ray cured at 20 kGy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bis-phenol-A diacrylate (Mn = 452)</td>
<td>54°C</td>
<td>66°C</td>
</tr>
<tr>
<td>ethoxylated b-p-A diacrylate (Mn = 572)</td>
<td>----</td>
<td>67°C</td>
</tr>
<tr>
<td>diluted acrylated epoxy-phenolic</td>
<td>92°C</td>
<td>69°C</td>
</tr>
</tbody>
</table>
Dynamic Mechanical Analysis
Dynamic Mechanical Analysis

Used by Charlesby for EB cured styrene-polyesters
Dynamic Mechanical Analysis

Effect of X-ray dose on peak $\tan \delta$ on coating binder/matrix materials
Dynamic Mechanical Analysis

Binder/matrix X-ray cured in mold to 60 kGy
Dynamic Mechanical Analysis

Eight ply carbon fiber X-ray cured in mold to 20 kGy
Pragmatic Tests: TMA

TMA in compression mode
EB XL PE Creep Resistance

Deformation, mm
(TMA constant load at > Tm)

Time, seconds

EVA Tm = 72°C under constant load at 100°C
Heat Deflection Test

Temperature increased at 2°C/minute under constant load
Heat Deflection Test

Six ply composite X-ray cured in mold at 24 kGy

- bis-phenol-A diacrylate matrix system – no impact additive
 - Heat Deflection: >180°C

- bis-phenol-A diacrylate matrix system – with impact additive
 - Heat Deflection: >180°C

Test ended at 180°C = maximum temperature of heating bath
X-ray Curing Studies

Initial X-ray curing carbon fiber composite in the mold
Deep-drawn Fiber Composite
X-ray Curing Composites in the Mold
X-ray Cured Motorcycle Fender
X-ray Cured Sports Car Fender
Conclusions

+ Materials development intended for coatings work can be transformed into use as the matrix system for fiber reinforced composites

+ Tests conducted using low-energy EB can be scaled up to higher energy and X-ray curing

+ X-rays facilitate curing in the mold which can be used for large sized products
Conclusions

+ Some properties developed for coatings are of benefit when binders are used as matrices:

 Surface wetting = adhesion
 Flexibility = impact resistance

+ Binders and matrices for EB/X-ray curing should be intentionally designed polymers

+ Fundamental insights into materials should be tempered with pragmatic testing