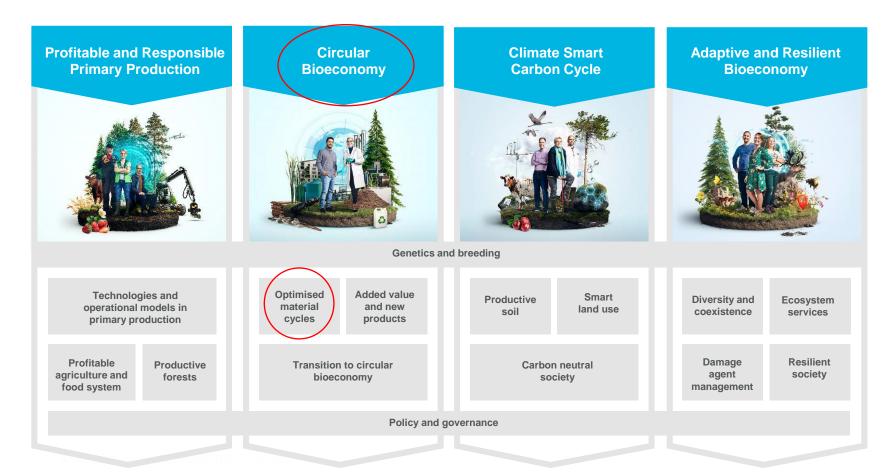


Pulp and paper mill sludge as soil improving material From factory to the fields

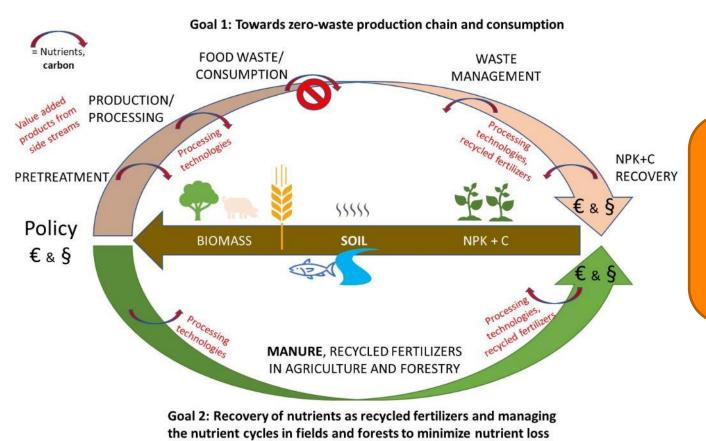
Kimmo Rasa Research manager, senior scientist, PhD Production systems / Biorefineries and bio-based fertilizers

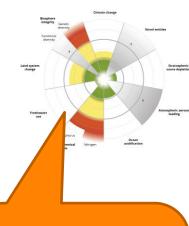
Content

- Circular bioeconomy
 - Optimized material cycles
- Concept pulp & paper industry side streams
 - Fiber sludge
 - Nutrient and carbon recycling
- Research activities
- Main results & Impact
- Future perspectives



LIKE © NATURAL RESOURCES INSTITUTE FINLAND





Lukes's Research Programs

Optimized material cycles Operational environment

Planetary boundaries Agricultural water protection Carbon sequestration Availability, price Food security Self sufficiency

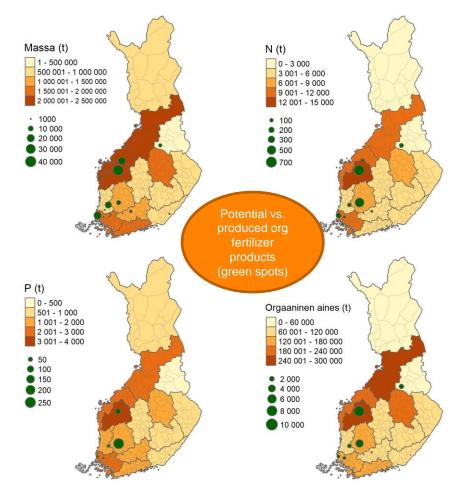
Recyclable nutrients vs. need of fertilizers (case phosphorus)

- It is possible to <u>cover 86% of P demand</u> in EU by optimizing the recycling of P from food processing, manure, wastewater, and municipal solid waste
 - Location of biomass-based nutrients
 - Soil nutrient status and plant nutrition ٠
- 72% of croplands and 57% of grasslands not P-responsive
- \rightarrow circular bioeconomy solutions are needed to <u>reallocate</u> phosphorus resources on continental scale
- The main constraint are
 - The logistic required to transport biobased fertilizers with low nutrient concentration
 - Technologies to increase nutrient content in the products

LEX4BIO

Optimising bio-based fertilisers in agriculture

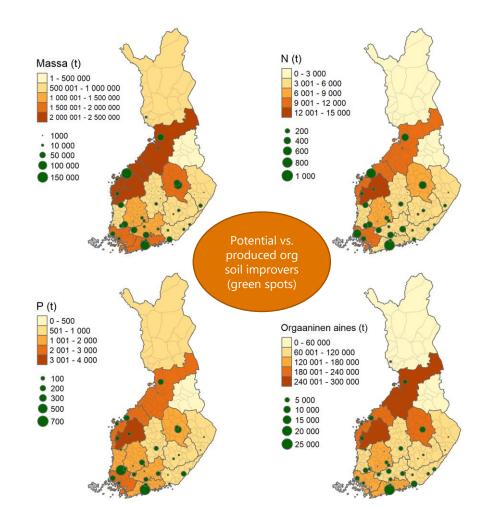
ne a knowladea basis for new a

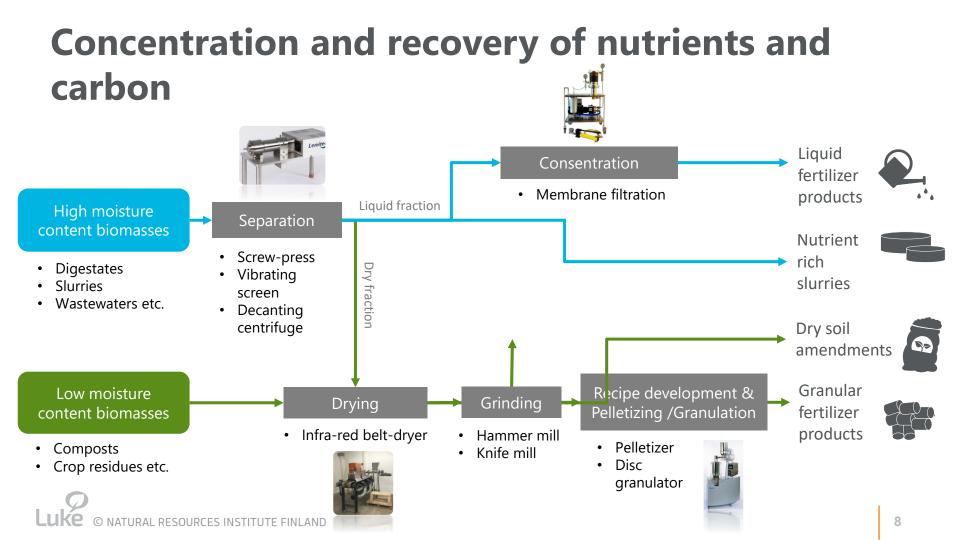

kg P/ha 0 - 55 - 1010 - 2020 - 3030 - 50> 50 No data P in biomass + P in soils vs. plant P need =better allocation of P resources Olsen P to threshold alue ratio 0 - 050.5 - 11.5 - 22 - 3 3-4 Coordinator: Kari Ylivainio, Luke Recena et al. 2022:

https://doi.org/10.1016/j.jcle

pro 2022 134749

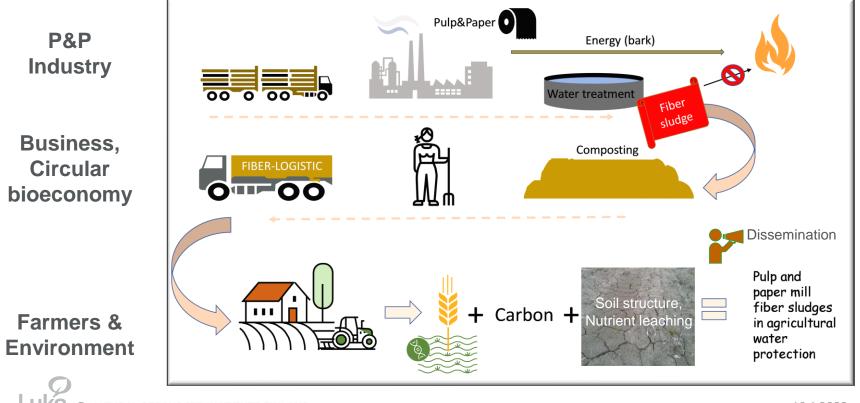
Fertilizer products: Organic fertilizer products


- Of the potential **less than 2 %** is nationally processed to organic fertilizers
- Regionally specific characteristics
- **Great potential** for circular bioeconomy-based solutions



Fertilizer products: **Organic soil improvers** (digestates, composts)

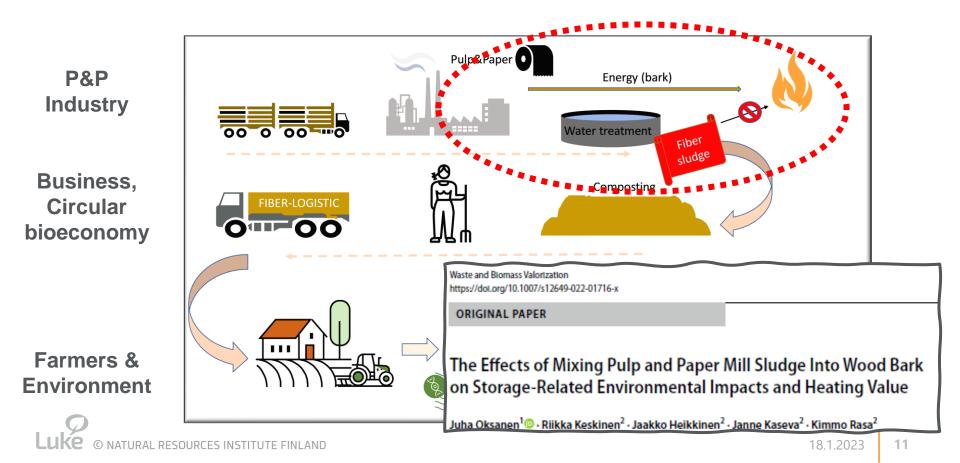
- **5.5% of the potential** is nationally processed to organic soil improvers (e.g. composts, digestates)
- Organic soil improvers produced yearly 1 061 000 tons
- Main operators are Jepuan Biokaasu Oy (Ostrobothnia), HSY (Uusimaa), Gasum Oy (many locations), Soilfood (Kaakkois-Suomi) →


TURAL RESOURCES INSTITUTE FINLAND

P&P industry sludges as soil improving material

From factory to the fields

9


P&P industry organic side streams

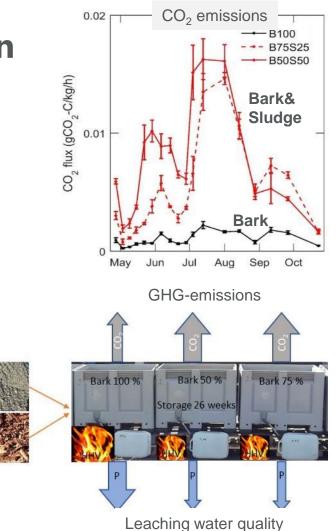
- 420 000 Mg dry matter annually (Dry matter ~30-35%)
- Quality varies depending on factory settings, process and feed stock
- CPMS&LPMS: phosphorus, nitrogen and cadmium content must be considered when applied
- Fiber Sludge is poor in nutrients, "short fibers"

		CPMS	LPMS	FS
	Units	(composted)	(Lime Stabilized)	(cellulose)
С	%	35.1	34.8	34.9
Ash	%	35.9	33.2	34.8
рН		7.9	8.0	8.7
Tot N	g kg⁻¹	9.5	9.8	0.5
Sol N	g kg⁻¹	1.6	1.3	0.0
Cd	mg kg ⁻¹	0.96	0.60	0.01

Paper 1: Sludge in factory, effect on heating value

Paper 1: Sludge in factory, effect on heating value

Motivation

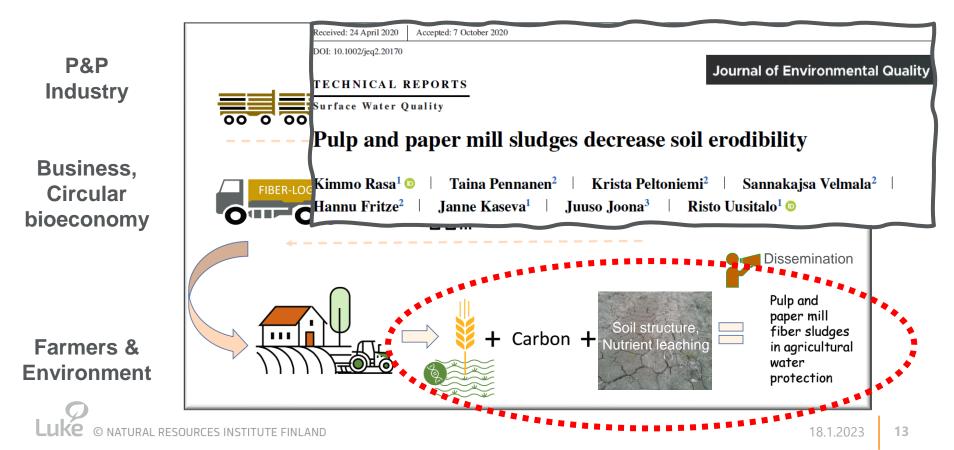

- Impact of sludge on heating value of bark + Environmental impacts
- Is there benefits if alternative approach for sludge disposal is to be adopted?

Results

- Bark and sludge stored together → microbial decomposition
- Co-storage of sludge and bark led to loss of energy
- Larger amounts of inorganic elements released

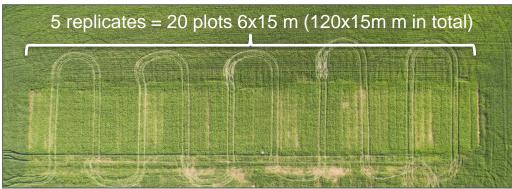
→ Green light, data supported need to find alternative usage for sludges

Luke © NATURAL RESOURCES INSTITUTE FINLAND



Fiber

sludge


Bark

Paper 2: Sludge degrease soil erodibility

Field experiment at Jokioinen

- Established at autumn 2015
 - Composted pulp mill sludge (CPMS)
 - Lime-stabilized pulp mill sludge (LPMS)
 - Fiber sludge (FS)
 - From pre-clarifier of cardboard machine process water
 - Unamended plots served as the control

Soil amendments

- Fiber sludge nutrient poor
- CPMS&LPMS: phosphorus, nitrogen and cadmium content must be considered when applied
- Current practice ~40 t ha⁻¹

Sludge	Moist t ha ⁻¹	Carbon t ha ⁻¹	P-tot kg ha ⁻¹	N-sol kg ha ⁻¹	N-tot kg ha ⁻¹	Cd g ha ⁻¹
CPMS	52	8	45	211	34	21
LPMS	51	9	53	30	32	16
FS	72	8	2	1	1	0.2

Rainfall simulation test

- Soil susceptibility to erosion and nutrient mobilization
- 30x40 cm soil monoliths taken to laboratory
- Simulated rain applied for 5 h d⁻¹ on two consecutive days at an intensity of 5 mm h⁻¹ (=25 mm d⁻¹)
- Percolation water samples were collected and analyzed
- Procedure repeated each spring 2016-2019 (published)

20 samples in each spring

LELIK CO. OZNABURAL CE NAN RURALNE BOURTIE SAMAST

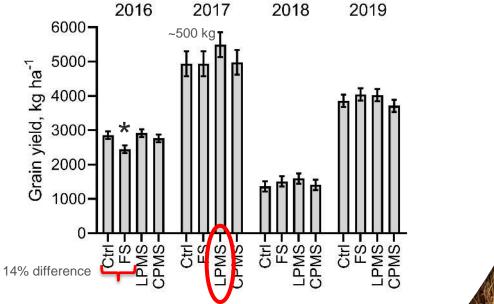

Fractor driven auge

Intact soil monolith

Rainfall simulator

Suspended solid (SS) and total phosphorus (TP)

- All products reduced SS and TP over 4-year period
- Reduction of SS in 1st year >60% and in 4th year >30 %
- Gradually subsiding effect over time
 - → Need for reapplication?
- Dissolved reactive P not affected by treatments



Soil carbon content

- No clear increase in soil carbon content after 4 years
 - \bullet Composted pulp mill sludge resulted in highest C %
 - More detailed studies and advanced study methods used!
- Liming effect, pH increased 0.2-0.6 pH Unit
- No effect on soil Cd content

Treatm.	С %	р	EC mS cm ⁻¹	р	рН	р	Cd mg kg ⁻¹	р
FS	2.34	0.767	0.87	<.0001	6.81	<.0001	0.16	0.984
LPMS	2.40	0.388	0.83	<.0001	6.69	<.0001	0.16	0.611
CPMS	2.50	0.053	0.71	0.001	6.40	0.005	0.17	0.558
CTRL	2.32		0.61		6.25		0.16	

Fiber treatments had minor effect on yields

Soil microbes 3 year after amendment

- The amendments increased <u>basal respiration</u> in spring and <u>microbial biomass</u> in autumn
- The amendments clearly <u>changed the fungal</u> and bacterial <u>community composition</u>
- Sebacinales ~300-700% increase
 - Indicator for less intensive land use typical in organic farming
- Funneliformis mossae ~200% increase
 - Arbuscular mycorrhiza fungi, nutrient uptake
- Tetracladium marchalianum ~230% increase
 - Fungi, efficient aggregator
- **Positive association** but no direct evidence that microbiological activity explains improved soil stability!

Foto: Pennaner

Fungal

community

Bacterial

0.0

0

community

FS LPMS

autum

IMDS3 0.0

CPMS

Financial support:

- Finnish Funding Agency for Technology and Innovation (Tekes/Business Finland) and the companies involved in the NSPPulp project: UPM-Kymmene Oyj, Metsä Fibre Oy, Stora Enso Oyj, Biolan Oy, Ekokem Oy, Outotec Finland Oy, Tyynelän maanparannus Oy
- Ravinnekuitu-project (2018-2019), financed by the Nutrient Recycling Pilot Programme (Finnish government key project)
- European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme, grant agreement 818290 (CIRCLES).

4-year data published

Journal of Environmental Quality

TECHNICAL REPORT Di Full Access

Pulp and Paper Mill Sludges Decrease Soil Erodibility

Kimmo Rasa 🗙, Taina Pennanen, Krista Peltoniemi, Sannakajsa Velmala, Hannu Fritze, Janne Kaseva, Juuso Joona, Risto Uusitalo

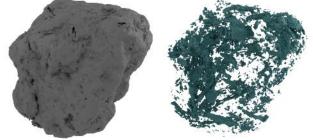
First published: 21 October 2020 | https://doi.org/10.1002/jeq2.20170

→ Practical Guide for Farmers

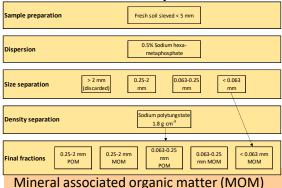
WATER PROTECTION PROGRAMME

Gypsum, fibre and structure lime – *a quide for farmers*

Second fiber treatment 10/2020


			and the second second		
	kg/ha, fresh	kg/ha, dry	C kg/ha	N kg/ha	
FS	62196	19998	7938	4	
LPMS	70539	19309	7014	273	
CPMS	43613	15602	7518	313	

- Fiber application repeated after 5 year study period
- Data available for 7 years, 2023 = year 8 \rightarrow to be published...
- Data in active use, work continues....



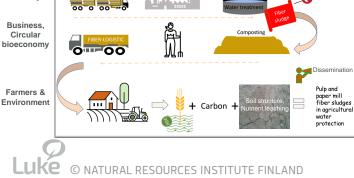
Ongoing studies

3D pore structure of soil aggregates X-ray tomography

"Tracing wood fiber sludge-derived carbon based on size and density fractions of soils"

is protected against decomposition

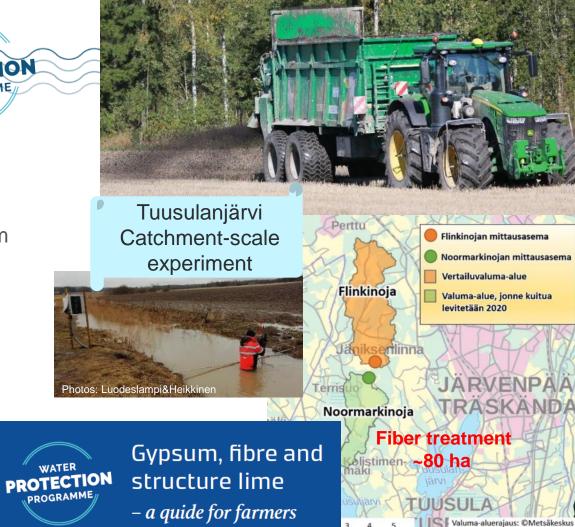
Fibers in vegetable production and in coarse



Catchment-scale experiment

1	Y		X	V P	00	SULA
1	2	3	4	5 Km	USI	Valuma-alue Taustakartta
					1	
18	3.1	.20	02	3		23

Life cycle assessment Pulp&Paper Energy (bark) P&P Industry iter treatme


Comparison of metagenomes and transcriptomes

- Two small catchments, other received composted soil improvement fibers 2020-2021 ~80 ha
- Fields of 8 farmers located ~ 30 km
 North of Helsinki
- Water quality measured with automatic sensors since 2019 and it continues at least 2023
- Dissemination, guide for farmers

→ Impact on public acceptance, decision making, financial support...

Taustakartta: OMML

Thank you!

Luke's working group: Risto Uusitalo, Taina Pennanen, Sannakajsa Velmala, Krista Peltoniemi, Hannu Fritze, Jaakko Heikkinen, Helena Soinne, Riikka Keskinen, Jari Hyväluoma, Helena Merkkiniemi, Johanna Nikama, Niko Jalava, Tuija Hytönen, Juha-Matti Pitkänen...

